Skip to main content
Log in

Control of a Robotic Manipulator Using Artificial Neural Networks with On-line Adaptation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

An adaptive neural system for positioning control of a PUMA 560 manipulator is presented". The computed torque method was implemented with a Multi-Layer Perceptron with on-line learning. The control scheme is implemented into two phases. The first one is the off-line phase in which the neural network is trained with previously known control actions. The second one is the on-line phase in which the neural network parameters are adapted while controlling the manipulator. The control system is able to respond to changes in the manipulator model and to load disturbances. As will be shown, control system performance is improved with the on-line learning strategy presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, B., Khatib, O. and Burdick, J.: ‘The explict dynamic model and inertial parameters of the Puma 560 arm’. Proceedings of the IEEE Conference on Robotics and Automation, San Franscisco, pp. 510-518, 1986.

  2. Burgin, G.: ‘Using cerebellar arithmetic computers.’. AI Expert. 7(6) (1992), 32.

    Google Scholar 

  3. Chow, M.-Y. and Menozzi, A.: ‘A self-organized CMAC controller’. Proceedings of the IEEE International Conference on Industrial Technology, pp. 68-72, 1994.

  4. Corke, P. I.: ‘Robotics Toolbox for use with Matlab’. IEEE Robotics and Automation Magazine 3(1) (1996), 24-32.

    Google Scholar 

  5. Hace, A., Safaric, R. and Jezernik, K.: ‘Artificial Neural Network Control for Manipulators and Lyapunov Theory’. IROS94 Proceedings 1. Munich, 1994.

  6. Jain, A. K. and Mao, J.: ‘Artificial Neural Networks: A Tutorial.’. IEEE ASSP Magazine, pp. 31-44, 1996.

  7. Lewis, F. L., Abdallah, C. T. and Dawson, D. M.: Control of Robot Manipulators. USA: Macmillan Publishing Company, a division of Macmillan, Inc., 1993.

    Google Scholar 

  8. Lewis, F. L., Yesildirek, A. and Liu, K.: ‘Multilayer Neural-Net Robot Controller with Guaranteed Tracking Performance’. IEEE Transactions on Neural Networks 7(2) (1996), 388-399.

    Google Scholar 

  9. Malki, H. A., Misir, D. and Chen, G.: ‘Fuzzy PID Control of a Flexible-Joint Robot Arm with Uncertainties from Time-Varying Loads.’. IEEE Transactions on Control Systems Technology 5(3) (1997), 371.

    Google Scholar 

  10. Ozaki, T. and Suzuki, T.: ‘Trajectory Control of Robotic Manipulators Using Neural Networks’. IEEE Trans. On Industrial Eletronics 38(3), (1991)

  11. Parma, G. G., Menezes, B. R. and Braga, A. P.: ‘Sliding mode algorithm for training multi-layer neural networks’. IEE Electronics Letters 38(1) (1998), 97-98.

    Google Scholar 

  12. Parma, G. G., Menezes, B. R. and Braga, A. P.: ‘Neural networks learning with sliding mode control: the sliding mode backpropagation algorithm’. International Journal of Neural Systems 9(3) (1999), 187-194.

    Google Scholar 

  13. Ritter, H.: ‘Self-Organizing Maps for Robot Control'. In: Proc. ICANN’97, 7th International Conference on Artificial Neural Networks, Vol. 1327 of Lecture Notes in Computer Science. Berlin: Springer, pp. 675-684, 1997.

    Google Scholar 

  14. Rocco, P.: ‘Stability of PID Control for Industrial Robot Arms.’. IEEE Transactions on Robotics and Automation. 12(4) (1996), 606.

    Google Scholar 

  15. Rosenblatt, F.: ‘The Perceptron: A probabilistic model for information storage in the brain’. Psychological review 65 (1958), 386-408.

    Google Scholar 

  16. Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: ‘Learning representations by back-propagation of errors’. Nature (323) (1986b), 533-536.

  17. Sciavicco, L. and Siciliano, B.: Modeling and Control of Robot Manipulator. University of Naples, Naples, Italy: McGraw-Hill, 1996.

    Google Scholar 

  18. Stemmer, M. R., Borges, P. E. R. and Borges, F. A. P.: ‘Comparação de Performance entre Controladores Clássicos em um Controlador Neural Torque Computado Aplicado ao Robô Puma 560’. III Congresso Brasileiro de Redes Neurais. V Escola de Redes Neurais. Florianpolis (in Portuguese), 1997.

    Google Scholar 

  19. Tumeh, Z. S.: ‘Discrete Computed-Torque Sliding-Mode Manipulator Control: Formulation and Validation’. Proceedings of the 30th Conference on Decision and Control. Brighton, England, 1991.

  20. van der Smagt, P. P. and Kröse, B. J. A.: ‘A Real-Time Learning Neural Robot Controller’. In: T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas (eds.): Proceedings of the 1991 International Conference on Artificial Neural Networks. North-Holland/Elsevier Science Publishers, pp. 351-356, 1991.

    Google Scholar 

  21. Yeung, K. S. and Chen, Y. P.: ‘A New Controler Design for Manipulators Using the Theory of Variable Structure System’. IEEE Transactions on Automatic Control 33(2), 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, R.A., Braga, A.d.P. & Menezes, B.R.d. Control of a Robotic Manipulator Using Artificial Neural Networks with On-line Adaptation. Neural Processing Letters 12, 19–31 (2000). https://doi.org/10.1023/A:1009694129740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009694129740

Navigation