Skip to main content
Log in

Transgenic mice in apoptosis research

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Transgenic mice have proved to be a valuable tool in various aspects of apoptosis research. They are particularly useful for studying apoptosis-related gene products in primary cells which may lead to different effects from similar experiments using immortalized cell lines. They allow the impact of these gene products on multi-faceted physiological processes to be identified. Transgenic mice have been generated expressing molecules ranging from Bcl-2 and Bcl-2 family members to CD95, superoxide dismutase and rhodopsin. This review details some of the insights revealed from such studies in diverse areas ranging from lymphoid development to neurodegeneration and effects on intracellular signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med 1997; 3: 614-620.

    Google Scholar 

  2. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440-442.

    Google Scholar 

  3. Zhang X, Chen MW, Ng A, et al. Abnormal prostate development in C3(1)-bcl-2 transgenic mice. Prostate 1997; 32: 16-26.

    Google Scholar 

  4. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y. Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development 1996; 122: 1703-1709.

    Google Scholar 

  5. Lagasse E, Weissman IL. bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 1994; 179: 1047-1052.

    Google Scholar 

  6. Katsumata M, Siegel RM, Louie DC, et al. Differential effects of Bcl-2 on T and B cells in transgenic mice. Proc Natl Acad Sci USA 1992; 89: 11376-11380.

    Google Scholar 

  7. Nuñez G, Hockenbery D, McDonnell TJ, Sorensen CM, Korsmeyer SJ. Bcl-2 maintains B cell memory. Nature 1991; 353: 71-73.

    Google Scholar 

  8. McDonnell TJ, Korsmeyer SJ. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 1991; 349: 254-256.

    Google Scholar 

  9. McDonnell TJ, Deane N, Platt FM, et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79-88.

    Google Scholar 

  10. Hsu SY, Lai RJ, Finegold M, Hsueh AJ. Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis. Endocrinology 1996; 137: 4837-4843.

    Google Scholar 

  11. Humphreys RC, Krajewska M, Krnacik S, et al. Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 1996; 122: 4013-4022.

    Google Scholar 

  12. Chen DF, Schneider GE, Martinou JC, Tonegawa S. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 1997; 385: 434-439.

    Google Scholar 

  13. Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J. Increased inferior olivary neuron and cerebellar granule cell numbers in transgenic mice overexpressing the human Bcl-2 gene. J Neurobiol 1997; 32: 502-516.

    Google Scholar 

  14. Porciatti V, Pizzorusso T, Cenni MC, Maffei L. The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Sci USA 1996; 93: 14955-14959.

    Google Scholar 

  15. Burne JF, Staple JK, Raff MC. Glial cells are increased proportionally in transgenic optic nerves with increased numbers of axons. J Neurosci 1996; 16: 2064-2073.

    Google Scholar 

  16. Martinou JC, Dubois-Dauphin M, Staple JK, et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994; 13: 1017-1030.

    Google Scholar 

  17. Fromm L, Overbeek PA. Inhibition of cell death by lens-specific overexpression of bcl-2 in transgenic mice. Dev Genetics 1997; 20: 276-287.

    Google Scholar 

  18. Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborski S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997; 277: 559-562.

    Google Scholar 

  19. Chen J, Flannery JG, LaVail MM, Steinberg RH, Xu J, Simon MI. bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc Natl Acad Sci USA 1996; 93: 7042-7047.

    Google Scholar 

  20. Joseph RM, Li T. Overexpression of Bcl-2 or Bcl-XLtransgenes and photoreceptor degeneration. Invest Ophthalmol Vis Sci 1996; 37: 2434-2446.

    Google Scholar 

  21. Sagot Y, Dubois-Dauphin M, Tan SA, et al. Bcl-2 overexpression prevents motorneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J Neurosci 1995; 15: 7727-7733.

    Google Scholar 

  22. Lagasse E, Weissman IL. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 1997; 89: 1021-1031.

    Google Scholar 

  23. Young F, Mizoguchi E, Bhan AK, Alt FW. Constitutive Bcl-2 expression during immunoglobulin heavy chain-promoted B cell differentiation expands novel precursor B cells. Immunity 1997; 6: 23-33.

    Google Scholar 

  24. Kenny JJ, Fischer RT, Lustig A, et al. bcl-2 alters the antigen-driven selection of B cells in mukappa but not in mu-only Xid transgenic mice. J Immunol 1996; 157: 1054-1061.

    Google Scholar 

  25. Tamura A, Katsumata M, Greene MI, Yui K. Inhibition of apoptosis and augmentation of lymphoproliferation in bcl-2 transgenic Fas/Fas liganddefective mice. Cell Immunol 1996; 168: 220-228.

    Google Scholar 

  26. Reap EA, Felix NJ, Wolthusen PA, Kotzin BL, Cohen PL, Eisenberg RA. bcl-2 transgenic Lpr mice show profound enhancement of lymphadenopathy. J Immunol 1995; 155: 5455-5562.

    Google Scholar 

  27. Benveniste P, Cohen A. p53 expression is required for thymocyte apoptosis induced by adenosine deaminase deficiency. Proc Natl Acad Sci USA 1995; 92: 8373-8377.

    Google Scholar 

  28. Nakajima H, Leonard WJ. Impaired peripheral deletion of activated T cells in mice lacking the common cytokine receptor gamma-chain: defective Fas ligand expression in gamma-chain-deficient mice. J Immunol 1997; 159: 4737-4744.

    Google Scholar 

  29. Kondo M, Akashi K, Domen J, Sugamura K, Weissman IL. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common gamma chain-deficient mice. Immunity 1997; 7: 155-162.

    Google Scholar 

  30. Strasser A, Harris AW, Corcoran LM, Cory S. Bcl-2 expression promotes B-but not T-lymphoid development in scid mice. Nature 1994; 368: 457-460.

    Google Scholar 

  31. Maraskovsky E, O'Reilly LA, Teepe M, Corcoran LM, Peschon JJ, Strasser A. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/-mice. Cell 1997; 89: 1011-1019.

    Google Scholar 

  32. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 1997; 89: 1033-1041.

    Google Scholar 

  33. Galandrini R, Henning SW, Cantrell DA. Different functions of the GTPase Rho in prothymocytes and late pre-T cells. Immunity 1997; 7: 163-174.

    Google Scholar 

  34. Linette GP, Grusby MJ, Hedrick SM, Hansen TH, Glimcher LH, Korsmeyer SJ. Bcl-2 is upregulated at the CD4+ CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1994; 1: 197-205.

    Google Scholar 

  35. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991; 67: 879-888.

    Google Scholar 

  36. Siegel RM, Katsumata M, Miyashita T, Louie DC, Greene MI, Reed JC. Inhibition of thymocyte apoptosis and negative antigenic selection in bcl-2 transgenic mice. Proc Natl Acad Sci USA 1992; 89: 7003-7007.

    Google Scholar 

  37. Grawunder U, Rolink A, Melchers F. Induction of sterile transcription from the kappa L chain gene locus in V(D)J recombinase-deficient progenitor B cells. Int Immunol 1995; 7: 1915-1925.

    Google Scholar 

  38. Petrie HT, Strasser A, Harris AW, Hugo P, Shortman K. CD4+8-and CD4-8+ mature thymocytes require different post-selection processing for final development. J. Immunol 1993; 151: 1273-1279.

    Google Scholar 

  39. Surh CD, Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 1994; 372: 100-103.

    Google Scholar 

  40. Strasser A, Harris AW, von Boehmer H, Cory S. Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene. Proc Natl Acad Sci USA 1994; 91: 1376-1380.

    Google Scholar 

  41. Tao W, Teh SJ, Melhado I, Jirik F, Korsmeyer SJ, Teh HS. The T cell receptor repertoire of CD4-8+ thymocytes is altered by overexpression of the BCL-2 protooncogene in the thymus. J Exp Med 1994; 179: 145-153.

    Google Scholar 

  42. Gratiot-Deans J, Merino R, Nuñez G, Turka LA. Bcl-2 expression during T-cell development: early loss and late return occur at specific stages of commitment to differentiation and survival. Proc Natl Acad Sci USA 1994; 91:10685-10689.

    Google Scholar 

  43. Fulcher DA, Basten A. Influences on the lifespan of B cell subpopulations defined by different phenotypes. Eur J Immunol 1997; 27: 1188-1199.

    Google Scholar 

  44. Hartley SB, Cooke MP, Fulcher DA, et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell 1993; 72: 325-335.

    Google Scholar 

  45. Nakayama K, Nakayama K, Dustin LB, Loh DY. T-B cell interaction inhibits spontaneous apoptosis of mature lymphocytes in Bcl-2-deficient mice. J Exp Med 1995; 182: 1101-1109.

    Google Scholar 

  46. Razvi ES, Jiang Z, Woda BA, Welsh RM. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. Am J Pathol 1995; 147: 79-91.

    Google Scholar 

  47. Nisitani S, Tsubata T, Murakami M, Okamoto M, Honjo T. The bcl-2 gene product inhibits clonal deletion of self-reactive B lymphocytes in the periphery but not in the bone marrow. J Exp Med 1993; 178: 1247-1254.

    Google Scholar 

  48. Smith KG, Weiss U, Rajewsky K, Nossal GJ, Tarlinton DM. Bcl-2 increases memory B cell recruitment but does not perturb selection in germinal centers. Immunity 1994; 1: 803-813.

    Google Scholar 

  49. Nuñ ez G, Hockenbery D, McDonnell TJ, Sorensen CM, Korsmeyer SJ. Bcl-2 maintains B cell memory. Nature 1991; 353: 71-73.

    Google Scholar 

  50. Sperling AI, Auger JA, Ehst BD, Rulifson IC, Thompson CB, Bluestone JA. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol 1996; 157: 3909-3917.

    Google Scholar 

  51. Radvanyi LG, Shi Y, Vaziri H, et al. CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J Immunol 1996; 156: 1788-1798.

    Google Scholar 

  52. Boise LH, Minn AJ, Noel PJ, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995;3: 87-98.

    Google Scholar 

  53. Lopez-Hoyos M, Carrio R, Merino R, et al. Constitutive expression of bcl-2 in B cells causes a lethal form of lupuslike autoimmune disease after induction of neonatal tolerance to H-2b alloantigens. J Exp Med 1996; 183: 2523-2531.

    Google Scholar 

  54. Strasser A, Whittingham S, Vaux DL, et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci USA 1991; 88: 8661-8665.

    Google Scholar 

  55. Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1996; 47: 19-28.

    Google Scholar 

  56. Tsujimoto Y, Croce CM. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 1986; 83: 5214-5218.

    Google Scholar 

  57. McDonnell TJ, Deane N, Platt FM, et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79-88.

    Google Scholar 

  58. Marin MC, Hsu B, Stephens LC, Brisbay S, McDonnell TJ. The functional basis of c-myc and bcl-2 complementation during multistep lymphomagenesis in vivo. Exp Cell Res 1995; 217: 240-247.

    Google Scholar 

  59. Strasser A, Elefanty AG, Harris AW, Cory S. Progenitor tumours from Emu-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cell survival. EMBO J 1996; 15: 3823-3834.

    Google Scholar 

  60. Strasser A, Harris AW, Bath ML, Cory S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990; 348: 331-333.

    Google Scholar 

  61. Zornig M, Busch G, Beneke R, et al. Survival and death of prelymphomatous B-cells from N-myc/bcl-2 double transgenic mice correlates with the regulation of intracellular Ca2+ fluxes. Oncogene 1995; 11: 2165-2174.

    Google Scholar 

  62. Trempus CS, Haseman JK, Tennant RW. Decreases in phorbol ester-induced papilloma development in v-Ha-ras transgenic TG. AC mice during reduced gene dosage of bcl-2. Mol Carcin 1997; 20: 68-77.

    Google Scholar 

  63. Acton D, Domen J, Jacobs H, Vlaar M, Korsmeyer S, Berns A. Collaboration of PIM-1 and BCL-2 in lymphomagenesis. Cur Topics Microbiol Immunol 1992; 182: 293-298.

    Google Scholar 

  64. Marin MC, Hsu B, Meyn RE, Donehower LA, el-Naggar AK, McDonnell TJ. Evidence that p53 and bcl-2 are regulators of a common cell death pathway important for in vivo lymphomagenesis. Oncogene 1994; 9: 3107-3112.

    Google Scholar 

  65. Shinto Y, Morimoto M, Katsumata M, et al. Moloney murine leukemia virus infection accelerates lymphomagenesis in Emu-bcl-2 transgenic mice. Oncogene 1995; 11: 1729-1736.

    Google Scholar 

  66. Acton D, Jacobs H, Domen J, Berns A. Bcl-2 reduces lymphomagenesis in deltaV-TCRbeta transgenic mice. Oncogene 1997; 14: 2497-2501.

    Google Scholar 

  67. Mazel S, Burtrum D, Petrie HT. Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med 1996; 183: 2219-2226.

    Google Scholar 

  68. Linette GP, Li Y, Roth K, Korsmeyer SJ. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc Natl Acad Sci USA 1996; 93: 9545-9552.

    Google Scholar 

  69. O'Reilly LA, Huang DCS, Strasser A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 1996; 15: 6979-6990.

    Google Scholar 

  70. Brady HJM, Gil-Gómez G, Kirberg J, Berns AJ. Bax alpha perturbs T cell development and affects cell cycle entry of T cells. EMBO J 1996; 15: 6991-7001.

    Google Scholar 

  71. Chao DT, Korsmeyer SJ. BCL-XL-regulated apoptosis in T cell development. Int Immunol 1997; 9: 1375-1384.

    Google Scholar 

  72. Chao DT, Linette GP, Boise LH, White LS, Thompson CB, Korsmeyer SJ. Bcl-XL and Bcl-2 repress a common pathway of cell death. J Exp Med 1995; 182: 821-828.

    Google Scholar 

  73. Grillot DA, Merino R, Nuñ ez G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med 1995; 182: 1973-1983.

    Google Scholar 

  74. Grillot DA, Merino R, Pena JC, et al. bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J Exp Med 1996; 183: 381-91.

    Google Scholar 

  75. Brady HJM, Salomons GS, Bobeldijk RC, Berns AJM. T cells from baxa transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53. EMBO J 1996; 15: 1221-1230.

    Google Scholar 

  76. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293-299.

    Google Scholar 

  77. Probert L, Akassoglou K, Kassiotis G, Pasparakis M, Alexopoulou L, Kollias G. TNF-alpha transgenic and knockout models of CNS inflammation and degeneration. J Neuroimmunol 1997; 72: 137-141.

    Google Scholar 

  78. Probert L, Akassoglou K, Alexopoulou L, et al. Dissection of the pathologies induced by transmembrane and wild-type tumor necrosis factor in transgenic mice. J Leuko Biol 1996; 59: 518-525.

    Google Scholar 

  79. Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 1997; 81: 627-635.

    Google Scholar 

  80. Grewal IS, Grewal KD, Wong FS, Picarella DE, Janeway CA Jr, Flavell RA. Local expression of transgene encoded TNF alpha in islets prevents autoimmune diabetes in nonobese diabetic (NOD) mice by preventing the development of auto-reactive islet-specific T cells. J Exp Med 1996; 184: 1963-1974.

    Google Scholar 

  81. Hunger RE, Carnaud C, Garcia I, Vassalli P, Mueller C. Prevention of autoimmune diabetes mellitus in NOD mice by transgenic expression of soluble tumor necrosis factor receptor p55. Eur J Immunol 1997; 27: 255-261.

    Google Scholar 

  82. May MJ, Ghosh S. Rel/NF-kappa B and I kappa B proteins: an overview. Sem Cancer Biol 1997; 8: 63-73.

    Google Scholar 

  83. Sonenshein GE. Rel/NF-kappa B transcription factors and the control of apoptosis. Sem. Cancer Biol 1997; 8: 113-119.

    Google Scholar 

  84. Attar RM, Caamano J, Carrasco D, et al. Genetic approaches to study Rel/NF-kappa B/I kappa B function in mice. Sem Cancer Biol 1997; 8: 93-101.

    Google Scholar 

  85. van Antwerp DJ, Martin SJ, Verma IM, Green DR. Inhibition of TNF-induced apoptosis by NF-kB. Trends Cell Biol 1998; 8: 107-111.

    Google Scholar 

  86. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4: 387-396.

    Google Scholar 

  87. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADDTRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84: 299-308.

    Google Scholar 

  88. Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994; 78: 681-692.

    Google Scholar 

  89. Young Lee S, Reichlin A, Santana A, Sokol KA, Nussenzweig MC, Choi Y. TRAF2 is essential for JNK but not NF-kB activation and regulates lymphocyte proliferation and survival. Immunity 1997; 7: 703-713.

    Google Scholar 

  90. Yeh WC, Shahinian A, Speiser D, et al. Early lethality, functional NF-kB activation and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997; 7: 715-725.

    Google Scholar 

  91. Boothby MR, Mora AL, Scherer DC, Brockman JA, Ballard DW. Perturbation of the T lymphocyte lineage in transgenic mice expressing a constitutive repressor of nuclear factor (NF)-kappaB. J Exp Med 1997; 185: 1897-1907.

    Google Scholar 

  92. Sikora E, Grassilli E, Radziszewska E, Bellesia E, Barbieri D, Franceschi C. Transcription factors DNA-binding activity in rat thymocytes undergoing apoptosis after heat-shock or dexamethasone treatment. Biochem Biophys Res Com 1993; 197: 709-715.

    Google Scholar 

  93. Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996; 184: 1155-1160.

    Google Scholar 

  94. Speiser DE, Lee SY, Wong B, et al. A regulatory role for TRAF1 in antigen-induced apoptosis of T cells. J Exp Med 1997; 185: 1777-1783.

    Google Scholar 

  95. Chinnaiyan AM, Tepper CG, Seldin MF, et al. FADD/MORT1 is a common mediator of CD95 (Fas/ APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 1996; 271: 4961-4965.

    Google Scholar 

  96. Newton K, Harris AW, Bath ML, Smith KGC, Strasser A. A dominant interferring ofFADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 1998; 17; 706-718.

    Google Scholar 

  97. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997; 22: 299-306.

    Google Scholar 

  98. Hara H, Fink K, Endres M, Friedlander RM, Gagliardini V, Yuan J, Moskowitz MA. Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J Cerebral Blood Flow Metabolism. 1997; 17: 370-375.

    Google Scholar 

  99. Friedlander RM, Gagliardini V, Hara H, et al. Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J Exp Med 1997; 185: 933-940.

    Google Scholar 

  100. Brady HJM, Gil-Gómez G. The Cell Cycle and Apoptosis. In Apoptosis: Biology, Mechanisms and Role in Disease, 1998 in press. Springer-Verlag, Heidelberg.

    Google Scholar 

  101. Bortner DM, Rosenberg MP. Overexpression of cyclin A in the mammary glands of transgenic mice results in the induction of nuclear abnormalities and increased apoptosis. Cell Growth Diff 1995; 6: 1579-1589.

    Google Scholar 

  102. Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R. Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA 1994; 91: 3754-3758.

    Google Scholar 

  103. Bortner DM, Rosenberg MP. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 1997; 17: 453-459.

    Google Scholar 

  104. Lee EY, Chang CY, Hu N, Wang YC, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 1992; 359: 288-294.

    Google Scholar 

  105. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992; 359: 295-300.

    Google Scholar 

  106. Clarke AR, Maandag ER, van Roon M, et al. Requirement for a functional Rb-1 gene in murine development. Nature 1992; 359: 328-330.

    Google Scholar 

  107. Bignon YJ, Chen Y, Chang CY, et al. Expression of a retinoblastoma transgene results in dwarf mice. Genes Dev 1993; 7: 1654-1662.

    Google Scholar 

  108. Chang CY, Riley DJ, Lee EY, Lee WH. Quantitative effects of the retinoblastoma gene on mouse development and tissue-specific tumorigenesis. Cell Growth Diff 1993; 4: 1057-1064.

    Google Scholar 

  109. Zacksenhaus E, Jiang Z, Chung D, Marth JD, Phillips RA, Gallie BL. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev 1996; 10: 3051-3064.

    Google Scholar 

  110. Dou QP. Putative roles of retinoblastoma protein in apoptosis. Apoptosis 1997; 2: 5-18.

    Google Scholar 

  111. Tan XT, Wang JYJ. The caspase-Rb connexion in cell death. Trends Cell Biol 8: 116-120.

  112. Guy CT, Zhou W, Kaufman S, Robinson MO. E2F-1 blocks terminal differentiation and causes proliferation in transgenic megakaryocytes. Mol Cell Biol 1996; 16: 685-693.

    Google Scholar 

  113. Field SJ, Tsai FY, Kuo FK, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996; 85: 549-561.

    Google Scholar 

  114. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355-365.

    Google Scholar 

  115. Zhou T, Edwards CK, Mountz JD. Prevention of Age-related T cell Apoptosis Defect in CD2-fastransgenic mice. J Exp Med 1995; 182: 129-137.

    Google Scholar 

  116. Hsu HC, Zhou T, Yang PA, Herrera GA, Mountz JD. Increased acute-phase response and renal amyloidosis in aged CD2-fas-transgenic mice. J Immunol 1997; 158: 5988-5996.

    Google Scholar 

  117. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature 1995; 377: 630-632.

    Google Scholar 

  118. Allison J, Georgiou HM, Strasser A, Vaux DL. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci USA 1997;94: 3943-3947.

    Google Scholar 

  119. Cheng J, Liu C, Yang P, Zhou T, Mountz JD. Increased lymphocyte apoptosis in Fas ligand transgenic mice. J Immunol 1997; 159: 674-684.

    Google Scholar 

  120. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555-556.

    Google Scholar 

  121. Vacchio MS, Papadopoulos V, Ashwell JD. Steroid production in the thymus: implications for thymocyte selection. J Exp Med 1994; 179: 1835-1846.

    Google Scholar 

  122. King LB, Vacchio MS, Dixon K, Hunziker R, Margulies DH, Ashwell JD. A targeted glucocorticoid receptor antisense transgene increases thymocyte apoptosis and alters thymocyte development. Immunity 1995; 3: 647-656.

    Google Scholar 

  123. Calnan BJ, Szychowski S, Chan FK, Cado D, Winoto A. A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 1995; 3: 273-282.

    Google Scholar 

  124. Zhou T, Cheng J, Yang P, et al. Inhibition of Nur77/ Nurr1 leads to inefficient clonal deletion of selfreactive T cells. J Exp Med 1996; 183: 1879-1892.

    Google Scholar 

  125. Cheng LE, Chan FK, Cado D, Winoto A. Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. EMBO J 1997; 16: 1865-1875.

    Google Scholar 

  126. Peled-Kamar M, Lotem J, Okon E, Sachs L, Groner Y. Thymic abnormalities and enhanced apoptosis of thymocytes and bone marrow cells in transgenic mice overexpressing Cu/Zn-superoxide dismutase: implications for Down syndrome. EMBO J 1995; 14: 4985-4993.

    Google Scholar 

  127. Bar Peled O, Korkotian E, Segal M, Groner Y. Constitutive overexpression of Cu/Zn superoxide dismutase exacerbates kainic acid-induced apoptosis of transgenic-Cu/Zn superoxide dismutase neurons. Proc Natl Acad Sci USA 1996; 93: 8530-8535.

    Google Scholar 

  128. Przedborski S, Khan U, Kostic V, Carlson E, Epstein CJ, Sulzer D. Increased superoxide dismutase activity improves survival of cultured postnatal midbrain neurons. J Neurochem 1996; 67: 1383-1392.

    Google Scholar 

  129. Gurney ME, Pu HF, Chin AY, et al. Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science 1994; 264: 1772-1775.

    Google Scholar 

  130. Selkoe DJ. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease. Ann Rev Cell Biol 1994; 10: 373-403.

    Google Scholar 

  131. LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild C C, Jay G. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 1995; 9: 21-30.

    Google Scholar 

  132. Moechars D, Lorent K, De Strooper B, Dewachter I, Van Leuven F. Expression in brain of amyloid precursor protein mutated in the alpha-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. EMBO J 1996; 15: 1265-1274.

    Google Scholar 

  133. Irizarry MC, Soriano F, McNamara M, et al. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 1997; 17: 7053-7059.

    Google Scholar 

  134. Chang GQ, Hao Y, Wong F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 1993; 11: 595-605.

    Google Scholar 

  135. Weiss ER, Hao Y, Dickerson CD, et al. Altered cAMP levels in retinas from transgenic mice expressing a rhodopsin mutant. Biochem Biophys Res Commun 1995; 216: 755-761.

    Google Scholar 

  136. Portera Cailliau C, Sung CH, Nathans J, Adler R. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci USA 1994; 91: 974-978.

    Google Scholar 

  137. Smith KG, Strasser A, Vaux DL. CrmA expression in T lymphocytes of transgenic mice inhibits CD95 (Fas/APO-1)-transduced apoptosis, but does not cause lymphadenopathy or autoimmune disease. EMBO J 1996; 15: 5167-5176.

    Google Scholar 

  138. Brady HJM, Pennington DJ, Dzierzak EA. Transgenic mice as models of human immunodeficiency virus expression and related cellular effects. J Gen Virol 1994; 75: 2549-2558.

    Google Scholar 

  139. Dickie P. HIV type 1 Nef perturbs eye lens development in transgenic mice. Aids Res Hum Retroviruses 1996; 12: 177-189.

    Google Scholar 

  140. Tinkle BT, Ueda H, Ngo L, et al. Transgenic dissection of HIV genes involved in lymphoid depletion. J Clin Invest 1997; 100: 32-39.

    Google Scholar 

  141. Kishi S, Saijyo S, Arai M, et al. Resistance to fasmediated apoptosis of peripheral T cells in human T lymphocyte virus type I (HTLV-I) transgenic mice with autoimmune arthropathy. J Exp Med 1997; 186: 57-64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gil-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil-Gómez, G., Brady, H.J.M. Transgenic mice in apoptosis research. Apoptosis 3, 215–228 (1998). https://doi.org/10.1023/A:1009607121302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009607121302

Navigation