Skip to main content
Log in

Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Fluorescence in situ hybridization (FISH) with microdissection probes from human chromosomes 3 and 6 was applied to visualize arm and subregional band domains in human amniotic fluid cell nuclei. Confocal laser scanning microscopy and quantitative three-dimensional image analysis showed a pronounced variability of p- and q-arm domain arrangements and shapes. Apparent intermingling of neighbouring arm domains was limited to the domain surface. Three-dimensional distance measurements with pter and qter probes supported a high variability of chromosome territory folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abney JR, Cutler B, Fillbach ML, Axelrod D, Scalettar BA (1997) Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol 137: 1459–1468.

    Article  PubMed  Google Scholar 

  • Boveri T (1888) Zellen-Studien II. Die Befruchtung und Teilung des Eies von Ascaris megalocephala. Jenaische Zeitschrift für Naturwissenschaft 22: 685–882.

    Google Scholar 

  • Boveri T (1909) Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität. Archiv für Zellforschung 3: 181–286.

    Google Scholar 

  • Chen AM, Lucas JN, Brenner DJ, Hill FS, Sachs RK (1996) Proximity effects for chromosome aberrations measured by FISH. Int J Radiat Biol 69: 411–420.

    Article  PubMed  Google Scholar 

  • Comings DE (1978) Mechanisms of chromosome banding and implications for chromosome structure. Annu Rev Genet 12: 25–46.

    Article  PubMed  Google Scholar 

  • Cooke HJ, Hindley J (1979) Cloning of human satellite III DNA: Different components are on different Chromosomes. Nucleic Acids Res 6: 3177–3197.

    PubMed  Google Scholar 

  • Cremer T, Cremer C, Baumann H et al. (1982) Rabl's model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 60: 46–56.

    Article  PubMed  Google Scholar 

  • Cremer T, Kurz A, Zirbel R et al. (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harbor Symp Quant Biol 58: 777–792.

    PubMed  Google Scholar 

  • Cremer C, Münkel C, Granzow M et al. (1996) Nuclear architecture and the induction of chromosomal aberrations. Mutat Res 366: 97–116.

    PubMed  Google Scholar 

  • de Boni U (1994) The interphase nucleus as a dynamic structure. Int Rev Cytol 150: 149–171.

    PubMed  Google Scholar 

  • Dietzel S, Weilandt E, Eils R, Münkel C, Cremer C, Cremer T (1995) Three-dimensional distribution of centromeric or paracentromeric heterochromatin of chromosomes 1, 7, 15 and 17 in human lymphocyte nuclei studied with light microscopic axial tomography. Bioimaging 3: 121–133.

    Article  Google Scholar 

  • Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Oxford University Press, Oxford, UK.

  • Eils R, Bertin E, Saracoglu K et al. (1995) Application of laser microscopy and three-dimensional Voronoi diagrams for volume and surface estimates of interphase chromosomes. J Microsc 177: 150–161.

    PubMed  Google Scholar 

  • Eils R, Dietzel S, Bertin E et al. (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X-chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135: 1427–1440.

    Article  PubMed  Google Scholar 

  • Guan X-Y, Meltzer PS, Cao J, Trent JM (1992) Rapid generation of region-specific genomic clones by chromosome microdissection: isolation of DNA from a region frequently deleted in malignant melanoma. Genomics 14: 680–684.

    PubMed  Google Scholar 

  • Guan X-Y, Meltzer PS, Burgess AC, Trent JM (1995) Coverage of chromosome 6 by chromosome microdissection: generation of 14 subregion-specific probes. Hum Genet 95: 637–640.

    Article  PubMed  Google Scholar 

  • Guan X-Y, Zhang H, Bittner M, Jiang Y, Meltzer P, Trent J (1996) Chromosome arm painting probes. Nat Genet 12: 10–11.

    Article  PubMed  Google Scholar 

  • Johnson GD, Nogueira Araujo GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43: 349–350.

    Article  PubMed  Google Scholar 

  • Lengauer C, Green ED, Cremer T (1992) Fluorescence in situ hybridization of YAC clones after ALU-PCR amplification. Genomics 13: 826–828.

    PubMed  Google Scholar 

  • Lichter P, Cremer T (1992) Chromosome analysis by nonisotopic in situ hybridization. In: Rooney DE, Czepulkowski BH, eds. Human Cytogenetics-a Practical Approach, 2nd edn, Vol. 1. Oxford: IRL Press, pp 157–192.

    Google Scholar 

  • Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–234.

    PubMed  Google Scholar 

  • Manuelidis L (1985) Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet 71: 288–293.

    PubMed  Google Scholar 

  • Morton NE (1991) Parameters of the human genome. Proc Natl Acad Sci USA 88: 7474–7476.

    PubMed  Google Scholar 

  • Münkel C, Eils R, Zink D, Dietzel S, Cremer T, Langowski J (1998) A multi-loop subcompartment model for the organization of interphase chromosomes. Submitted.

  • Okada TA, Comings DE (1979) Higher order structure of chromosomes. Chromosoma 72: 1–14.

    Article  PubMed  Google Scholar 

  • Pinkel D, Gray JW, Trask B, van den Engh G, Fuscoe J, van Dekken H (1986) Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harbor Symp Quant Biol 51: 151–157.

    PubMed  Google Scholar 

  • Pinkel D, Landegent J, Collins C et al. (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: Detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85: 9138–9142.

    PubMed  Google Scholar 

  • Quien N, Müller W (1992) Gothic Vaults and Transputers. IEEE Computer Graphics Applications 12: 12–13.

    Google Scholar 

  • Rabl C (1885) Über Zelltheilung. Morphologisches Jahrbuch 10: 214–330.

    Google Scholar 

  • Riethman HC, Moyzis RK, Meyne J, Burke DT, Olson MV (1989) Cloning human telomeric DNA fragments into Saccharomyces cerevisiae using a yeast-artificial-chromosome vector. Proc Natl Acad Sci USA 86: 6240–6244.

    PubMed  Google Scholar 

  • Robinett CC, Straight A, Li G et al. (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135: 1685–1700.

    Article  PubMed  Google Scholar 

  • Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE (1995) A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci USA 92: 2710–2714.

    PubMed  Google Scholar 

  • Savage JRK, Papworth DG (1973) The relationship of radiation-induced dicentric yield to chromosome arm number. Mutat Res 19: 139–143.

    PubMed  Google Scholar 

  • Schardin M, Cremer T, Hager HD, Lang M (1985) Specific staining of human chromosomes in Chinese hamster 3 man hybrid cell lines demonstrates interphase chromosome territories. Hum Genet 71: 281–287.

    PubMed  Google Scholar 

  • Scherthan H, Cremer T (1994) Nonisotopic in situ hybridization in paraffin-embedded tissue sections. Methods Mol Genet 5: 223–238.

    Google Scholar 

  • Shelby RD, Hahn KM, Sullivan KF (1996) Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Cell Biol 135: 545–557.

    Article  PubMed  Google Scholar 

  • Stack SM, Brown DB, Dewey WC (1977) Visualization of interphase chromosomes. J Cell Sci 26: 281–299.

    PubMed  Google Scholar 

  • Vocero-Akbani A, Helms C, Wang JC et al. (1996) Mapping human telomere regions with YAC and P1 clones: chromosome specific markers for 27 telomeres including 149 STSs and 24 polymorphisms for 14 proterminal regions. Genomics 36: 492–506.

    Article  PubMed  Google Scholar 

  • Willard HF, Waye JS (1987) Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol 25: 207–214.

    PubMed  Google Scholar 

  • Yokota H, van den Engh G, Hearst JE, Sachs RK, Trask BJ (1995) Evidence for the organization of chromatin in megabase pair sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol 130: 1239–1249.

    Article  PubMed  Google Scholar 

  • Young IT (1977) Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem 25: 935–941.

    PubMed  Google Scholar 

  • Zorn C, Cremer C, Cremer T, Zimmer J (1979) Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Exp Cell Res 124: 111–119.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietzel, S., Jauch, A., Kienle, D. et al. Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res 6, 25–33 (1998). https://doi.org/10.1023/A:1009262223693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009262223693

Navigation