Skip to main content
Log in

The angiogenic factor bFGF impairs leukocyte adhesion and rolling under flow conditions

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Recirculation of leukocytes is mediated by the intricately regulated expression of adhesion molecules on both the vessel wall and leukocyte membranes. In the present paper it is demonstrated that tumor angiogenesis factors impair leukocyte rolling and adhesion under flow conditions. Three lines of evidence presented in this paper support this finding; (i) treatment of cultured endothelial cells (EC) with the angiogenic factor basic fibroblast growth factor (bFGF) results in decreased ICAM-1 expression and decreased numbers of adhering leukocytes under flow conditions. (ii) flow induced upregulation of endothelial ICAM-1 in the presence of bFGF does not yield ICAM-1 levels higher than on resting EC. (iii) bFGF decreases the TNFα mediated induction of E-selectin and ICAM-1 expression, resulting in decreased rolling and firm adhesion of leukocytes on the endothelial surface. For ICAM-1 it is demonstrated that bFGF inhibits TNFα induced levels of mRNA, and that this effects is transcriptionally regulated. These findings support our earlier described hypothesis that angiogenic factors are involved in the tumor derived escape mechanism from immune surveillance, since we demonstrate here that these mechanisms are operative under physiologic flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimizu Y, Newman W, Tanaka Y, Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today1992; 13, 106–112.

    Article  PubMed  CAS  Google Scholar 

  2. Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today1992; 13, 93–100.

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor infiltrating lymphocytes. Science1986; 233, 1318–1321.

    PubMed  CAS  Google Scholar 

  4. Griffith KD, Read EJ, Carrasquillo JA, et al.In vivo distribution of adoptively transferred indium-111-labelled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst1989; 81, 1709–1717.

    PubMed  CAS  Google Scholar 

  5. Staunton DE, Marlin SD, Stratowa C, et al.Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell1988; 52, 925–933.

    Article  PubMed  CAS  Google Scholar 

  6. Swerlick RA, Lee KH, Li LJ, et al.Regulation of vascular cell adhesion molecule 1 on human dermal microvascular endothelial cells. J Immunol1992; 149, 698–705.

    PubMed  CAS  Google Scholar 

  7. Ruco LP, Pomponi D, Pigott R, et al.Cytokine production (IL-1 alpha, IL-1 beta, and TNF alpha) and endothelial cell activation (ELAM-1 and HLADR) in reactive lymphadenitis, Hodgkin's disease, and in non-Hodgkin's lymphomas. An immunocytochemical study. Am J Pathol1990; 137, 1163–1171.

    PubMed  CAS  Google Scholar 

  8. Pober JS, Gimbrone MAJ, Lapierre LA, et al.Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol1986; 137, 1893–1896.

    PubMed  CAS  Google Scholar 

  9. Gamble JR, Vadas MA. Endothelial cell adhesiveness for human T lymphocytes is inhibited by transforming growth factor-beta 1. J Immunol1991; 146, 1149–1154.

    PubMed  CAS  Google Scholar 

  10. Gamble JR, Vadas MA. Endothelial adhesiveness for blood neutrophils is inhibited by transforming growth factor-beta. Science1988; 242, 97–99.

    PubMed  CAS  Google Scholar 

  11. Griffioen AW, Damen CA, Martinotti S, et al.Endothelial ICAM-1 expression is suppressed in human malignancies; role of angiogenic factors. Cancer Res1996; 56, 1111–1117.

    PubMed  CAS  Google Scholar 

  12. Wu NZ, Klitzman B, Dodge R, Dewhirst MW. Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res1992; 52, 4265–4268.

    PubMed  CAS  Google Scholar 

  13. Piali L, Fichtel A, Terpe HJ, et al.Endothelial vascular cell adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J Exp Med1995; 181, 811–816.

    Article  PubMed  CAS  Google Scholar 

  14. Kitayama J, Nagawa H, Yasuhara H, et al. Suppressive effect of basic fibroblast growth factor on transendothelial emigration of CD4(+) T-lymphocyte. Cancer Res1994; 54, 4729–4733.

    PubMed  CAS  Google Scholar 

  15. Griffioen AW, Damen CA, Blijham GH, Groenewegen G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor associated endothelium. Blood1996; 88(2), 667–673.

    PubMed  CAS  Google Scholar 

  16. Kuijper PHM, Gallardo Torres HI, Lammers JJ, et al.Platelet-and fibrin-deposition at the damaged vessel wall: Cooperative substrates for neutrophil adhesion under flow conditions. Blood1997; 89(1), 166–175.

    PubMed  CAS  Google Scholar 

  17. Kuijper PHM, Gallardo Torres HI, Van der Linden JAM, et al.Platelet-dependent primary hemostasis promotes selectin-and integrin mediated neutrophil adhesion to damaged endothelium under flow conditions. Blood1996; 8, 3271–3278.

    Google Scholar 

  18. Groenewegen G, De Leij M, Jeunhomme GMAA, Buurman WA. Supernatants of human leukocytes contain mediators, different from interferon-gamma, which induces expression of MHC class II antigens. J Exp Med1986; 164, 131–143.

    Article  PubMed  CAS  Google Scholar 

  19. Koenderman L, Kok PTM, Hamelink ML, et al. An improved method for the isolation of eosinophilic granulocytes from peripheral blood of normal individuals. J Leukocyte Biol1988; 44, 79–86.

    PubMed  CAS  Google Scholar 

  20. Sakariassen KS, Aarts PAAM, De Groot PG, et al.A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix and purified components. J Lab Clin Med1983; 102, 522–531.

    PubMed  CAS  Google Scholar 

  21. Martinotti S, Toniato E, Colagrande A, et al. Heavymetal modulation of the human intercellular adhesion molecule (ICAM-1) gene expression. Bba-Gene Struct Express1995; 1261, 107–114.

    Google Scholar 

  22. Cilenti L, Toniato E, Ruggiero P, et al.Transcriptional modulation of the human intercellular adhesion molecule gene I (ICAM-1) by retinoic acid in melanoma cells. Exp Cell Res1995; 218, 263–270.

    Article  PubMed  CAS  Google Scholar 

  23. Gorman CM, Moffat LF, Howard BH. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol1982; 2, 1044–1051.

    PubMed  CAS  Google Scholar 

  24. Morigi M, Zoja C, Figliuzzi M, et al.Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood1995; 85, 1696–1703.

    PubMed  CAS  Google Scholar 

  25. Melder RJ, Koenig GC, Witwer BP, et al.During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Med1996; 2, 992–997.

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen M, Corless CL, Kraling BM, et al.Vascular expression of E-selectin is increased in estrogen-receptor-negative breast cancer: a role for tumor-cellsecreted interleukin-1 alpha. Am J Pathol1997; 150, 1307–1314.

    PubMed  CAS  Google Scholar 

  27. Kraling BM, Razon MJ, Boon LM, et al.E-selectin is present in proliferating endothelial cells in human hemangiomas. Am J Pathol1996; 148, 1181–1191.

    PubMed  CAS  Google Scholar 

  28. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood1997; 84, 2068–2101.

    Google Scholar 

  29. Von Andrian UH, Hansell P, Chambers JD, et al.L-selectin function is required for beta 2-integrinmediated neutrophil adhesion at physiological shear rates in vivo. Am J Physiol1992; 263, H1034–1044.

    PubMed  CAS  Google Scholar 

  30. DeGrendele HC, Estess P, Picker LJ, Siegelman MH. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med1996; 183, 1119–1130.

    Article  PubMed  CAS  Google Scholar 

  31. Brockhaus M, Schoenfeld HJ, Schlaeger EJ et al.Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc Natl Acad Sci USA1990; 87, 3127–3131.

    Article  PubMed  CAS  Google Scholar 

  32. Budson AE, Ko L, Brasel C, Bischoff J. The angiogenesis inhibitor AGM-1470 selectively increases Eselectin. Biochem Biophys Res Commun1996; 225, 141–145.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffioen, A.W., Relou, I.A., Gallardo Torres, H.I. et al. The angiogenic factor bFGF impairs leukocyte adhesion and rolling under flow conditions. Angiogenesis 2, 235–243 (1998). https://doi.org/10.1023/A:1009237324501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009237324501

Navigation