Skip to main content
Log in

A Mathematical Model of the Cerebellar-Olivary System I: Self-Regulating Equilibrium of Climbing Fiber Activity

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We use a mathematical model to investigate how climbing fiber-dependent plasticity at granule cell to Purkinje cell (gr→Pkj) synapses in the cerebellar cortex is influenced by the synaptic organization of the cerebellar-olivary system. Based on empirical studies, gr→Pkj synapses are assumed to decrease in strength when active during a climbing fiber input (LTD) and increase in strength when active without a climbing fiber input (LTP). Results suggest that the inhibition of climbing fibers by cerebellar output combines with LTD/P to self-regulate spontaneous climbing fiber activity to an equilibrium level at which LTP and LTD balance and the expected net change in gr→Pkj synaptic weights is zero. The synaptic weight vector is asymptotically confined to an equilibrium hyperplane defining the set of all possible combinations of synaptic weights consistent with climbing fiber equilibrium. Results also suggest restrictions on LTP/D at gr→Pkj synapses required to produce synaptic weights that do not drift spontaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akshoomoff NA, Courchense E (1992) A new role for the cerebellum in cognitive processes. Behav. Neurosci. 106:731-738.

    Article  PubMed  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math. Biosci. 10:25-61.

    Article  Google Scholar 

  • Anderson G, Garwicz M, Hesslow G (1988) Evidence for GABA-mediated cerebellar inhibition of the inferior olive in the cat. Brain Res. 472:450-456.

    Google Scholar 

  • Angaut P, Sotelo C (1989) Synaptology of the cerebello-olivary pathway: doubling labeling with anterograde axonal tracing and GABA immunocytochemistry in the rat. Brain Res. 479:361-365.

    Article  PubMed  Google Scholar 

  • Armstrong DM, Harvey RJ, Schild RF (1974). Topographical localization in the olivo-cerebellar projection: an electrophysiological study in the cat. J. Comp. Neurol. 154:287-302.

    PubMed  Google Scholar 

  • Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J. Physiol. 289:425-448.

    PubMed  Google Scholar 

  • Artola A, Bröcher S, Singer W (1990) Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347:69-72.

    Article  PubMed  Google Scholar 

  • Bloedel JR, Bracha V, Kelly TM, Wu J (1991) Substrates for motor learning: does the cerebellum do it all? Ann. N.Y. Acad. Sci. 627:305-18.

    PubMed  Google Scholar 

  • Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog. Brain Res. 25:334-336.

    PubMed  Google Scholar 

  • Bullock D, Fiala J, Grossberg S (1994) A neural model of timed response learning in the cerebellum. Neural Networks 7:1101-1114.

    Google Scholar 

  • Demer JL, Echelman DA, Robinson DA (1985) Effects of electrical stimulation and reversible lesions of the olivocerebellar pathway on Purkinje cell activity in the flocculus of the cat. Brain Res. 346:22-31.

    Article  PubMed  Google Scholar 

  • De Schutter E (1995) Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis. Trends Neurosci. 18:291-95.

    Article  PubMed  Google Scholar 

  • de Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocyochemistry. J. Comp. Neurol. 284:12-35.

    PubMed  Google Scholar 

  • Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13:2910-2918.

    PubMed  Google Scholar 

  • Eccles JC (1973) The cerebellum as a computer: patterns in time and space. J. Physiol. 229:1-32.

    PubMed  Google Scholar 

  • Eccles JC, Ito M, Szentágotai J (1967) The Cerebellum as a Neuronal Machine. Springer-Verlag, New York.

    Google Scholar 

  • Ekerot CF, Kano M (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 342:357-360.

    Article  PubMed  Google Scholar 

  • Ekerot CF, Oscarsson O (1981) Prolonged depolarization elicited in Purkinje cell dendrites by climbing fibre impulses in the cat. J. Physiol. 318:207-221.

    PubMed  Google Scholar 

  • Fujita M (1982) Adaptive filter model of the cerebellum. Biol. Cybern. 45:195-206.

    Article  PubMed  Google Scholar 

  • Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545-47.

    PubMed  Google Scholar 

  • Gellman RS, Gibson AR, Houk JC (1985) Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J. Neurophysiol. 54:40-60.

    PubMed  Google Scholar 

  • Gilbert PFC (1974) A theory of memory that explains the structure and function of the cerebellum. Brain Res. 70:1-18.

    Article  PubMed  Google Scholar 

  • Gilbert PFC (1975) How the cerebellum could memorize movements. Nature 254:688-689.

    PubMed  Google Scholar 

  • Gonshor A, Melville-Jones G (1973) Changes in human vestibulo-ocular response induced by vision-reversal during head rotation. J. Physiol. (London) 234:102-103.

    Google Scholar 

  • Groenewegen HJ, Voogd J (1977) The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J. Comp. Neurol. 174:417-488.

    PubMed  Google Scholar 

  • Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J. Comp. Neurol. 183:551-602.

    PubMed  Google Scholar 

  • Hirano T (1990) Depression and potentiation of the synaptic transmission between a granule cell and Purkinje cell in rat cerebellar culture. Neurosci. Lett. 119:141-144.

    Article  PubMed  Google Scholar 

  • Houk JC, Gibson AR (1986) Sensorimotor processing through the cerebellum. In: JS King, J Courville, ed. New Concepts in Cerebellar Neurobiology. Lissman, New York, pp. 387-416.

    Google Scholar 

  • Ito M (1982) Cerebellar control of the vestibulo-ocular reflex: around the flocculus hypothesis. Ann. Rev. Neurosci. 12:85-102.

    Article  Google Scholar 

  • Ito, M(1984) The Cerebellum and Neural Control. Raven Press, New York.

  • Ito M (1989) Long-term depression. Ann. Rev. Neurosci. 12:85-102.

    Article  PubMed  Google Scholar 

  • Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33:253-258.

    Article  PubMed  Google Scholar 

  • Ivry R (1993) Cerebellar involvement in the explicit representation of temporal information. Ann. N.Y. Acad. Sci. 682:214-230.

    PubMed  Google Scholar 

  • Keating JG, Thach WT (1995) Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J. Neurophysiol. 73:1329-1340.

    Google Scholar 

  • Keele SW, Ivry R (1990) Does the cerebellum provide a common computation for diverse tasks? a timing hypothesis. Ann. NY Acad. Sci. 608:179-207.

    PubMed  Google Scholar 

  • Kenyon GT, Medina JF, Mauk MD (1998) A mathematical model of the cerebellar-olivary system. II: Motor adaptation through systematic disruption of climbing fiber equilibrium. J. Comput. Neurosci. 5:71-90.

    Article  PubMed  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1993) Cognitive and language functions of the human cerebellum. Trends Neurosci. 16:444-447.

    Article  PubMed  Google Scholar 

  • Linden DJ, Dickenson MH, Smeyne M, Connor JA (1991) A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7:81-89.

    Article  PubMed  Google Scholar 

  • Lisberger SG (1988) The neural basis for learning simple motor skills. Science 242:728-735.

    PubMed  Google Scholar 

  • Llinas R, Walton K (1979) Place of the cerebellum in motor learning. In: MAB Brazier, ed. Brain Mechanisms of Memory and Learning. Raven Press, New York, pp. 17-36.

    Google Scholar 

  • Llinas R, Welsh JP (1993) On the cerebellum and motor learning. Curr. Opin. Neurobiol. 3:958-968.

    Article  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J. Physiol. 202:437-470.

    Google Scholar 

  • Mauk MD (1997) Relative contributions of cerebellar cortex and nuclei to motor learning: contradictions or clues? Neuron. 18:343-346.

    Article  PubMed  Google Scholar 

  • Mauk MD, Donegan NH (1997) A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. and Mem. 4:130-158

    Google Scholar 

  • Mauk MD, Kenyon GT (1993) A stochastic model of cerebellar granule→Purkinje synapses (abstract). Soc. Neurosci. Abstr. 19:1609.

    Google Scholar 

  • Medina JF, Mauk MD (1995) Stochastic simulations of cerebellar mediated motor adaptation (abstract). Soc. Neurosci. Abstr. 21:1222.

    Google Scholar 

  • Montarolo PG, Palestini M, Strata P (1982) The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J. Physiol. 332:187-202.

    PubMed  Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron. 9:967-975.

    Article  PubMed  Google Scholar 

  • Oscarsson O (1980) Functional organization of olivary projection to the cerebellar anterior lobe. In: J Courville, C de Montigny, Y Lamarre, ed. The Inferior Olivary Nucleus: Anatomy and Physiology. Raven, New York, pp. 279-289.

    Google Scholar 

  • Pellionisz A, Llinas R (1979) Brain modeling by tensor network theory and computer simulation: the cerebellum-distributed processor for predictive coordination. Neurosci. 4, 323-348.

    Article  Google Scholar 

  • Pellionisz A, Llinas R (1980) Tensorial approach to the geometry of brain function: cerebellar coordination via a metric tensor. Neurosci. 5, 1125-1136.

    Article  Google Scholar 

  • Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126-1131.

    PubMed  Google Scholar 

  • Ruigrok TJ, Voogd J (1990) Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris-leucoagglutinin (PHA-L). J. Comp. Neurol. 298:315-333.

    PubMed  Google Scholar 

  • Sakurai M (1987) Synaptic modification of parallel fibre-Purkinje cell transmission in in vitroguinea-pig cerebellar slices. J. Physiol. (London) 394:463-480.

    Google Scholar 

  • Sakurai M (1989) Depression and potentiation of parallel fiber-Purkinje cell transmission in in vitrocerebellar slices. In: P Strata, ed. The Olivocerebellar System in Motor Control. Springer-Verlag, New York, vol. 17, pp. 221-230.

    Google Scholar 

  • Salin PA, Malenka RC, Nicoll RA (1996) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron. 16:797-803.

    Article  PubMed  Google Scholar 

  • Schreurs BG, Alkon DL (1993) Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Res. 631:235-240.

    Article  PubMed  Google Scholar 

  • Sears LL, Steinmetz JE (1991) Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res. 545:114-122.

    Article  PubMed  Google Scholar 

  • Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4:303-321.

    Article  PubMed  Google Scholar 

  • Shibuki K, Okada D (1992) Cerebellar long-term potentiation under suppressed postsynaptic Ca2+ activity. Neuro Report 3:231-234.

    Google Scholar 

  • Tank DW, Sugimori M, Connor JA, Llinas RR (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242:773-777.

    PubMed  Google Scholar 

  • Thach WT (1980) Complex spikes, the inferior olive, and natural behavior. In: J Courville, C de Montigny, Y Lamarre, ed. The Inferior Olivary Nucleus: Anatomy and Physiology. Raven Press, New York, pp. 349-360.

    Google Scholar 

  • Thach WT, Goodkin JP, Keating JG (1992) Cerebellum and the adaptive coordination of movement. Ann. Rev. Neurosci. 15:403-442.

    Article  PubMed  Google Scholar 

  • Thompson RF (1986) The neurobiology of learning and memory. Science 233:941-947.

    PubMed  Google Scholar 

  • Watanabe E (1984) Neuronal events correlated with long-term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Brain Res. 297(1):169-174.

    Article  PubMed  Google Scholar 

  • Weiss C, Houk JC, Gibson AR (1990) Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of red nucleus. J. Neurophysiol. 64:1170-85.

    PubMed  Google Scholar 

  • Welsh JP, Harvey JA (1992) The role of the cerebellum in voluntary and reflexive movements: history and current status. In: R Llinas, C Sotelo, ed. The Cerebellum Revisited. Springer-Verlag, New York, pp. 301-34.

    Google Scholar 

  • Yu QX, Ebner TJ, Bloedel JR (1985) Electrophysiological study of the corticonuclear projection in the cat cerebellum. Brain Res. 327:121-134.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenyon, G.T., Medina, J.F. & Mauk, M.D. A Mathematical Model of the Cerebellar-Olivary System I: Self-Regulating Equilibrium of Climbing Fiber Activity. J Comput Neurosci 5, 17–33 (1998). https://doi.org/10.1023/A:1008874209991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008874209991

Navigation