Skip to main content
Log in

The influence of corridors on the movement behavior of individual Peromyscus polionotus in experimental landscapes

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

To assess corridor effects on movement in Peromyscus polionotus (old-field mice), we used a set of three experimental landscapes that contained multiple patches (1.64 ha) of usable, open habitat embedded in a loblolly pine (Pinus taeda) forest matrix. Some patches were connected by corridors and others were isolated (unconnected). We introduced mice to nest boxes in experimental patches and followed them through the landscapes via trapping. We found weak evidence that the presence of corridors decreased the probability that P. polionotus (particularly females) would disperse or disappear from a patch. In the process of live trapping the patches, we also encountered `feral' P. polionotus, Sigmodon hispidus (cotton rats), and Peromyscus gossypinus (cotton mice). The average number of feral animals did not differ between isolated and connected patches. This suggests that corridors do not act as drift fences that `sieve' individuals out of the matrix and into the patches. However, more male than female P. polionotus and S. hispidus were trapped in isolated patches. This intersexual difference did not exist in connected patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akçakaya, H. R. and Ferson, S. 1990. Ramas/space: spatially structured population models for conservation biology. Applied Biomathematics, Setauket, New York, 114 pp.

    Google Scholar 

  • Anderson, G. S. 1995. The influence of spatial factors on animal populations: a model and some empirical data.M.S. thesis. Iowa State University. 97 pp.

  • Anderson, G. S. and Danielson, B. J. 1997. The effects of landscape composition and physiognomy on metapopulation size: the role of corridors. Landscape Ecol 12: 261–271.

    Google Scholar 

  • Andreassen, H. P., Hertzberg, K. and Ims, R. A. 1998. Space-use responses to habitat fragmentation and connectivity in the root vole Microtus oeconomus. Ecology 79: 1223–1235.

    Google Scholar 

  • Bennett, A. F. 1990a. Habitat corridors: their role in wildlife management and conservation. Dept. Conservation and Environment, Melbourne, Australia. 37 pp.

    Google Scholar 

  • Bennett, A. F. 1990b. Habitat corridors and the conservation of small mammals in a fragmented forest environment. Landscape Ecol 4: 109–122.

    Google Scholar 

  • Bennett, A.F., Henein, K. and Merriam, G. 1994. Corridor use and the elements of corridor quality: chipmunks and fencerows in a farmland mosaic. Biol Cons 68: 155–166.

    Google Scholar 

  • Bowne, D. R., Peles, J. D. and Barrett, G. W. 1999. Effects of landscape spatial structure on movement patterns of the hispid cotton rat (Sigmodon hispidus). Landscape Ecol. 14: 53–45.

    Google Scholar 

  • Bunce, R. G. H. and Howard, D. C. 1992. Species Dispersal in Agricultural Habitats. Columbia University Press, New York.

    Google Scholar 

  • Conroy, M. J., Cohen, Y., James, F. C., Matsinos, Y. G. and Maurer, B. A. 1995. Parameter estimation, reliability, and model improvement for spatially explicit models of animal populations. Ecol Appl 5: 17–19.

    Google Scholar 

  • Danielson, B. J. and Anderson, G. S.. 1999. Habitat selection in geographically complex landscapes. In The Ecology of Small Mammals at the Landscape Level. pp. 89–103. Edited by G. W. Barrett and J. D. Peles. Springer-Verlag Press, New York.

    Google Scholar 

  • Danielson, B. J. and Gaines, M. S. 1987. The influences of conspecific and heterospecific residents on colonization. Ecology 68: 1778–1784.

    Google Scholar 

  • Danielson, B. J. and Swihart, R. K. 1987. Home range dynamics and activity patterns of Microtus ochrogaster and Synaptomys cooperi in syntopy. J Mammalogy 68: 160–165.

    Google Scholar 

  • Dramstad, W. E., Olson, J. K. and Forman, R. T. T. 1996. Landscape ecology principles in landscape architecture and land-use planning. Island Press, Washington, D.C., 80 pp.

    Google Scholar 

  • Davenport, L. B. Jr. 1964. Structure of two Peromyscus polionotus populations in old-field ecosystems at the AEC Savannah River Plant. J Mammalogy 45: 95–113.

    Google Scholar 

  • Dunning, J. B. Jr., Danielson, B. J. and Pulliam, H. R. 1992. Ecological processes that affect populations in complex landscapes. Oikos 65: 169–175.

    Google Scholar 

  • Dunning, J. B. Jr., Stewart, D. J., Danielson, B. J., Noon, B. R., Root, T. L., Laberson, R. H. and Stevens, E. E. 1995. Spatially explicit population models: current forms and future uses. Ecol Appl 5: 3–11.

    Google Scholar 

  • Fahrig, L. and Merriam, G. 1985. Habitat patch connectivity and population survival. Ecol 66: 1762–1768.

    Google Scholar 

  • Fahrig, L. and Merriam, G. 1994. Conservation of fragmented populations. Cons Biol 8: 50–59.

    Google Scholar 

  • Forman, R. T. T. 1995. Land Mosaics. Cambridge University Press. Cambridge. 632 pp.

    Google Scholar 

  • Golley, F. B., Gentry, J. B., Caldwell, L. D. and Davenport, L. B. Jr. 1965. Number and variety of small mammals on the AEC Savannah River Plant. J Mammalogy 46: 1–18.

    Google Scholar 

  • Haddad, N. M. and Baum. K. A. 1999. An experimental test of corridor effects on butterfly densities. Ecol Appl. 9: 623–633.

    Google Scholar 

  • Halama, K. J. and Dueser, R. D. 1994. Of mice and habitats: tests for density-dependent habitat selection. Oikos 69: 107–114.

    Google Scholar 

  • Hansson, L. 1987. Dispersal routes of small mammals at an abandoned field in central Sweden. Holarctic Ecol 10: 154–160.

    Google Scholar 

  • Henein, K. and Merriam, G. 1990. The elements of connectivity where corridor quality is variable. Landscape Ecol 4: 157–170.

    Google Scholar 

  • Ims, R. A. 1995. Movement patterns in relation to landscape structures. In Mosaic landscapes and ecological processes. pp. 85–109. Edited by L. Hansson, L. Fahrig, and G. Merriam. Springer-Verlag, Berlin.

    Google Scholar 

  • Johnson, M. L. and Gaines, M. S. 1990. Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Ann Rev Ecol Syst 21: 449–480.

    Google Scholar 

  • King, J. A. 1983. Seasonal dispersal in a seminatural population of Peromyscus maniculatus. Can J Zoology 61: 2740–2750.

    Google Scholar 

  • La Polla, V. N. and Barrett, G. W. 1993. Effects of corridor width and presence on the population dynamics of the meadow vole (Microtus pennsylvanicus). Landscape Ecol 8: 25–38.

    Google Scholar 

  • Lefkovitch, L. P. and Fahrig, L. 1985. Spatial characteristics of habitat patches and population survival. Ecol Modelling 30: 297–308.

    Google Scholar 

  • Merriam, G. and Lanoue, A. 1990. Corridor use by small mammals: field measurement for three experimental types of Peromyscus leucopus. Landscape Ecol 4: 123–131.

    Google Scholar 

  • Opdam, P. 1988. Populations in fragmented landscape. In Proc 2nd. International Seminar of the International Association of Landscape Ecology. pp. 75–77. Edited by K. F. Scheiber. Munstersche Geographische Arbeiten 29. Munster.

  • Pulliam, H. R., Dunning, J. B. and Liu, J. 1992. Population dynamics in complex landscapes: a case study. Ecol Appl 2: 165–177.

    Google Scholar 

  • Stamps, J. A., Buechner, M. and Krishnan, V. V. 1987. The effects of edge permeability and habitat geometry on emigration from patches of habitat. Am Nat 129: 533–552.

    Google Scholar 

  • Stenseth, N. C. and Lidicker, W. Z. 1992. Animal dispersal: small mammals as a model. Chapman and Hall. New York. 365 pp.

    Google Scholar 

  • Stickel, L. F. 1968. Home range and travel. In The Biology of Peromyscus (Rodentia). pp. 373–411. Edited by J. A. King. Special Publication No. 2., American Society of Mammalogists, Oklahoma.

    Google Scholar 

  • Szzcki, J. 1987. Ecological corridor as a factor determining the structure and organization of a bank vole population. Acta Theriologica 32: 31–44.

    Google Scholar 

  • Taylor, P. D., Fahrig, L., Henein, K. and Merriam, G. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571–573.

    Google Scholar 

  • Wegner, J. F. and Merriam, G. 1979. Movement by birds and small mammals between a wood and adjoining farmland habitats. Cons Biol 2: 349–357.

    Google Scholar 

  • Wiens, J. A., Stenseth, N. C., Van Horne, B. and Ims, R. A. 1993. Ecological mechanisms in landscape ecology. Oikos 66: 369–380.

    Google Scholar 

  • Wolfe, J. O. 1993. Why are female small mammals territorial? Oikos 68: 364–370.

    Google Scholar 

  • Wolfe, J. O., Freeberg, M. H. and Dueser, R. D. 1983. Interspecific territoriality in two sympatric species of Peromyscus (Rodentia: Cricetidae). Behav Ecol Sociobiology 12: 237–242.

    Google Scholar 

  • Wolfe, J. O. and Peterson, J. A. 1998. An offspring-defense hypothesis for territoriality in female mammals. Ethol Ecol Evol 10: 227–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielson, B.J., Hubbard, M.W. The influence of corridors on the movement behavior of individual Peromyscus polionotus in experimental landscapes. Landscape Ecology 15, 323–331 (2000). https://doi.org/10.1023/A:1008109227107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008109227107

Navigation