Skip to main content
Log in

A Random DNA Sequencing, Computer-Based Approach for the Generation of a Gene Map of Molluscum Contagiosum Virus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The genome of Molluscum contagiosum virus (MCV) has a high G+C content, which largely differs from those of vaccinia virus (VAC) and other characterized poxviruses. This has precluded the use of DNA hybridization for the identification of MCV genes and the further establishment of the virus genetic map. To circumvent this problem, we have partially sequenced clones containing virus restriction endonuclease fragments, which were derived by either single or double-digestion of genomic DNA from the subtype I of MCV. The DNA sequences were translated and used to search protein data bases. This analysis resulted in the finding of high-scoring matches to data base entries, including forty-five VAC genes. In addition, MCV-specific sequences that encoded protein domains of known function (i.e. DNA J domain) were found. The locations of MCV clones were inferred from the presumed colinearity of both MCV and VAC genomes, and further confirmed by PCR technology. The data presented here led to the construction of a partial genetic map of MCVI, which revealed that the order and orientation of a large number of MCV genes were equivalent to those of their VAC homologues. The conserved gene arrangement was apparently disrupted in the terminal regions, where MCV sequences showing homologies with the VAC counterparts were not found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Postlethwaite R.J., Arch Environ Health 21, 43–452, 1970.

    Google Scholar 

  2. Porter C.D., Muhlemann M.F., Cream J.J., and Archard L.C., Epidemiol Infect 99, 563–567, 1987.

    Google Scholar 

  3. Katzman M., Carey J.T., Elmets C.A., Jacobs G.H., Lederman M.M., Br J Dermatol 116, 131–138, 1987.

    Google Scholar 

  4. Koopman R.J., Van Merrienboer F.C., Vreden S.G., Dolmans W.M., Br J Dermatol 126, 528–529, 1992.

    Google Scholar 

  5. Darai G., Reisner H., Scholz J., Scnitzler P., and Lorbarcher de Ruiz H., J Med Virol 18, 29–39, 1986.

    Google Scholar 

  6. Scholz J., Rosen-Wolff A., Bugert J., Reisner H., White M.I., Darai G., and Postlethwaite R., J Infect Diseases 158, 898–900, 1988.

    Google Scholar 

  7. Thompson C.H., De Zwart-Steffe R.T., and Biggs I.M., J Med Virol 32, 1–9, 1990.

    Google Scholar 

  8. Porter C.D., and Archard L.C., J Med Virol 38, 1–6, 1992.

    Google Scholar 

  9. McFadden G., Pace W.E., Purres J., and Dales S., Virology 94, 297–313, 1979.

    Google Scholar 

  10. Porter C.D., and Archard L.C., J Gen. Virol. 68, 673–682, 1987.

    Google Scholar 

  11. Blake N.W., Porter C.D., and Archard L.C., J Virol 65, 3583–3589, 1991.

    Google Scholar 

  12. Sonntag K.-C., Clauer U., Bugert J.J., Schnitzler P., and Darai G., Virology 210, 471–478, 1995.

    Google Scholar 

  13. Martin-Gallardo A., Moratilla M., Agromayor M., Nuñez A., Funes J.M., Varas A.J., Collado M., Valencia A., Lopez-Estebaranz J.L., and Esteban M., Virus Genes 12, 1996, (in press).

  14. Mercer A.A., Lyttle D.J., Whelan E.M., Fleming S.B., and Sullivan J.T., Virology 212, 698–704, 1995.

    Google Scholar 

  15. Wittek R., Kuenzle C.C., and Wyler R., J Gen Virol 43, 231–234, 1979.

    Google Scholar 

  16. McCombie W.R., Kirkness E., Fleming J.T., Kerlavage A.R., Iovannisci D.M., and Martin-Gallardo A., Methods 3, 33–40, 1991.

    Google Scholar 

  17. Deveraux J., Haeberli P., and Smithies O., Nucleic Acids Res 12, 387–395, 1984.

    Google Scholar 

  18. Pearson W.R., and Lipman D.J., Proc Natl Acad Sci USA 85, 2444–2448, 1988.

    Google Scholar 

  19. Altschul S.F., Gish W., Miller W., Myers W.W., and Lipman D.J., J Mol Biol 215, 403–410, 1990.

    Google Scholar 

  20. Kyte J., and Doolittle R.F., J Mol Biol 157, 105–132, 1982.

    Google Scholar 

  21. Bairoch A., Nucleic Acids Res 20, 2013–2018, 1992.

    Google Scholar 

  22. Goebel S.J., Johnson G.P., Perkus M.E., Davis S.W., Winslow J.P., and Paoletti E., Virology 179, 247–266, 1990.

    Google Scholar 

  23. Johnson G.P., Goebel S.J., and Paoletti E., Virology 196, 381–401, 1993.

    Google Scholar 

  24. Massung R.F., Liu L.-I., Qui J., Knight J.C., Yuran T.E., Kerlavage A.R., Parsons J.M., Venter J.C., and Esposito J.J., Virology 211, 215–240, 1994.

    Google Scholar 

  25. Gershon P.D., Ansell D.M., and Black D.N., J Virol 63, 4703–4708, 1989.

    Google Scholar 

  26. Gong S., Lai S., and Esteban M., Virology 178, 81–91, 1990.

    Google Scholar 

  27. Moss B., in Fields B.N. (ed), Virology, Raven Press, New York, 1990, pp. 2079–2112.

    Google Scholar 

  28. Yuen L., and Moss B., Proc Natl Acad Sci USA 84, 6417–6421, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varas, A.J., Esteban, M., Moratilla, M. et al. A Random DNA Sequencing, Computer-Based Approach for the Generation of a Gene Map of Molluscum Contagiosum Virus. Virus Genes 14, 73–80 (1997). https://doi.org/10.1023/A:1007991508159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007991508159

Navigation