Skip to main content
Log in

Expression and Electrophysiological Function of Actin in Chick Cerebellar Neurons

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Among several monoclonal antibodies obtained by immunizing Balb/c mice with cerebellar synaptic membrane fractions from E20 chick embryos, the antibody, named M35, suppressed Ca-spikes in immature cultured chick cerebellar neurons. M35 immunoprecipitated 43kDa protein from a 125I-labeled embryonic crude cerebellar membrane fraction. Immunohistochemically, the M35 antigen was expressed most intensively in Purkinje cells, but its expression was limited to highly motile structures at developmental neuronal remodeling. Electrophysiologically, M35 facilitated current responses to AMPA and inhibited the responses to GABA in cultured cerebellar Purkinje neurons. The several peptides derived from the affinity-purified 43kDa protein were found to have homologous amino acid sequences to non-muscle actins. These results suggest that the antigen recognized by M35 may play an essential role probably as membrane ion channels modulating synaptic functions in not only the development and growth but also the neuronal activity of chick cerebellar Purkinje cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mori, J., Ashida, H., Maru, E., and Tatsuno, J. 1982. Effects of Ca ions action potentials in immature cultured neurons from chick cerebral cortex. J. Cell. Physiol. 110:241-244.

    Google Scholar 

  2. Mori-Okamoto, J., Ashida, H., Maru, E., and Tatsuno, J. 1982. Combined spikes induced by Ca and Na currents in cultured cerebellar neurons from chick embryo. Brain Res. 258:318-322.

    Google Scholar 

  3. Mori-Okamoto, J., Ashida, H., Maru, E., and Tatsuno, J. 1983. The development of action potentials in cultures explanted cortical neurons from chick embryos. Develop. Biol. 97:408-416.

    Google Scholar 

  4. Mori-Okamoto, J., Ikeda, Y., and Tatsuno, J. 1985. Development of sensitivity to GABA and glycine in cultured cerebellar neurons. Dev. Brain Res. 20:249-258.

    Google Scholar 

  5. Mori-Okamoto, J., Okamoto, K., and Tatsuno, J. 1989. Characterization of excitatory amino acid receptor in cultured chick cerebellar neurons. Neuroscience 28:413-422.

    Google Scholar 

  6. Mori-Okamoto, J., Okamoto, K., and Tatsuno, J. 1993. Intracellular mechanisms underlying the suppression of AMPA response by trans-ACPD in cultured chick Purkinje neurons. Mol. Cell. Neurosci. 4:375-38.

    Google Scholar 

  7. Harris, K. M. and Kater, S. B. 1994. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17:341-371.

    Google Scholar 

  8. Kennedy, M. B. 1997. The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20:264-268.

    Google Scholar 

  9. Fifkova, E. and Delay, R. J. 1982. Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol. 95:345-350.

    Google Scholar 

  10. Matus, A., Ackermann, M., Pehling, G., Byers, H. R., and Fujiwara, K. 1982. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA. 79:7590-7594.

    Google Scholar 

  11. Janmey, P. A. 1994. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol. 56:169-191.

    Google Scholar 

  12. Negulyaev, Y. A., Vedernikova, E. A., and Maximov, A. V. 1996. Disruption of actin filaments increases the activity of sodiumconducting channels in human myeloid leukemia cells. Mol. Biol. Cell. 7:1857-1864.

    Google Scholar 

  13. Maximov, A. V., Vedernikova, E. A., Hinssen, H., Khaitlina, S. Y., and Negulyaev, Y. A. 1997. Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells. FEBS lett. 412:94-96.

    Google Scholar 

  14. Kost, T. A., Theodorakis, N., and Hughes, S. H. 1983. The nucleotide sequence of the chick cytoplasmic β-actin gene. Nucleic Acids Res. 11:8287-8301.

    Google Scholar 

  15. Lowry, O. H., Rosenbrough, N. J., Fair, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.

    Google Scholar 

  16. Wano, Y., Uchiyama, T., Fukui, K., Maeda, K., Uchino, H., and Yodoi, J. 1984. Characterization of human interleukin 2 receptor (Tac antigen) in normal and leukemic T cell: coexpression of normal and aberrant receptors on HUT-102 cells. J. Immunol. 132:3005-3010.

    Google Scholar 

  17. Tamura, G., Dasily, M. O., Gallatin, M. W., NcGrath, M. S., Wissman, I. L., and Pillermer, E. A. 1984. Isolation of molecules recognized by monoclonal antibodies and antisera; the solid phase immunoisolation technique. Anal. Biochem. 136:458-464.

    Google Scholar 

  18. Graus, F., Cordon-Cardo, C., Houghon, A. N., Melamed, M. R., and Old, L. J. 1984. Distribution of the ganglioside GD3 in the human nervous system detected by R24 mouse monoclonal antibody. Brain Res. 324:190-194.

    Google Scholar 

  19. Ishikawa, K., Mizusawa, H., Fujita, T., Ohkoshi, N., Doi, M., Komatsuzaki, Y., Iwamoto, H., Ogata, T., and Shoji, S. 1995. Calbindin-D 28k immunoreactivity in the cerebellum of spinocerebellar degeneration. J. Neurol. Sci. 129:179-185.

    Google Scholar 

  20. Kadowaki, K., McGowan, E., Mock, G., Chandler, S., and Emson, P. C. 1993. Distribution of calcium binding protein mRNAs in rat cerebellar cortex. Neurosci. Lett. 153:80-84.

    Google Scholar 

  21. Miura, K., Miki, H., Shimazaki, K., Kawai, N., and Takenawa, T. 1996. Interaction of Ash/Grb-2 via its SH3 domains with neuronspecific p150 and p65. Biochem. J. 316:639-645.

    Google Scholar 

  22. Altman, J. and Bayer, S. A. 1978. Prenatal development of cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J. Comp. Neurol. 179:23-48.

    Google Scholar 

  23. Maile, I. L. and Sidmen, R. L. 1961. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4:277-296.

    Google Scholar 

  24. Vandekerckhove, J. and Weber, K. 1978. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J. Mol. Biol. 126:783-802.

    Google Scholar 

  25. Chang, K. S., Zimmer, W. E. Jr., Bergsma, D. J., Dodgson, J. B., and Schwartz, R. J. 1984. Isolation and characterization of six different chicken actin genes. Mol. Cell. Biol. 4:2498-2508.

    Google Scholar 

  26. Bergsma, D. J., Chang, K. S., and Schwartz, R. J. 1985. Novel chicken actin gene: third cytoplasmic isoform. Mol. Cell. Biol. 5:1151-1162.

    Google Scholar 

  27. Gunning, P., Ponte, P., Okayama, H., Engel, J., Blau, H., and Kedes, L. 1983. Isolation and characterization of full-length cDNA clones for human α-, β-, and γ-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol. Cell. Biol. 3:787-795.

    Google Scholar 

  28. Rakic, P. 1971. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus thesus. J. Comp. Neurol. 141:283-312.

    Google Scholar 

  29. Kaech, S., Fischer, M., Doll, T., and Matus, A. 1997. Isoform specificity in the relationship of actin to dendritic spines. J. Neurosci. 17:9565-9572.

    Google Scholar 

  30. Ulloa, L. and Avila, J. 1996. Involvement of γ and β actin isoforms in mouse neuroblastoma differentiation. Eur. J. Neurosci. 8:1441-1451.

    Google Scholar 

  31. Weinberger, R., Schevzov, G., Jeffrey, P., Gordon, K., Hill, M., and Gunning, P. 1996. The molecular composition of neuronal microfilaments is spatially and temporally regulated. J. Neurosci. 16:238-252.

    Google Scholar 

  32. Micheva, K. D., Vallee, A., Beaulieu, C., Herman, I. M., and Leclerc, N. 1998. β-actin is confined to structures having high capacity of remodelling in developing and adult rat cerebellum. Eur. J. Neurosci. 10:3785-3798.

    Google Scholar 

  33. Vandekerckhove, J., Leavitt, J., Kakunaga, T., and Weber, K. 1980. Coexpression of a mutant β-actin and the two normal β-and γ-cytoplasmic actins in a stably transformed human cell line. Cell 22:893-899.

    Google Scholar 

  34. Fischbach, G. D. and Dichter, M. A. 1974. Electrophysiological and morphologic properties of neurons in dissociated chick spinal cord cell cultures. Dev. Biol. 37:100-116.

    Google Scholar 

  35. Spitzer, N. C. 1979. Ion channels in development. Annu. Rev. Neurosci. 2:363-397.

    Google Scholar 

  36. Llinas, R. Z. and Sugimori, M. 1980. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.) 305:197-213.

    Google Scholar 

  37. Johnson, B. D. and Byerly, L. 1993. A cytoskeletal mechanism for Ca2+channel metabolic dependence and inactivation by intracellular Ca2+ Neuron 10:797-804.

    Google Scholar 

  38. Gulley, R. L. and Reese, T. S. 1981. Cytoskeletal organization at the postsynaptic complex. J. Cell. Biol. 91:298-302.

    Google Scholar 

  39. Carbonetto, S. and Lindenbaum, M. 1995. The basement membrane at the neuromuscular junction: a synaptic mediatrix. Curr. Opin. Neurobiol. 5:596-605.

    Google Scholar 

  40. Kirsch, J. and Betz, H. 1993. Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain. Brain Res. 621:301-310.

    Google Scholar 

  41. Craig, A. M., Banker, G., Chang, W., McGrath, M. E., and Serpinskaya, A. S. 1996. Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons. J. Neurosci. 16:3166-3177.

    Google Scholar 

  42. Petralia, R. S. and Wenthold, R. J. 1992. Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318:329-354.

    Google Scholar 

  43. Rosenmund, C. and Westbrook, G. L. 1993. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10:805-814.

    Google Scholar 

  44. Allison, D. W., Gelland, V. I., and Craig, A. M. 1998. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18:2423-2436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tandai-Hiruma, M., Mori-Okamoto, J., Kotani, M. et al. Expression and Electrophysiological Function of Actin in Chick Cerebellar Neurons. Neurochem Res 25, 1095–1106 (2000). https://doi.org/10.1023/A:1007670012531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007670012531

Navigation