Skip to main content
Log in

Protection Against Snake Venom-Induced Neuronal Injury by the New Hypothalamic Neurohormone

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The action of PRP is characterized by the pronounced activation of the background activity (BA) of the brain spinal cord, and the degree of the activity depends on BA initial level. The typical peculiarity of Vipera raddei venom influence is the initial increase in frequency of BA with subsequent depression. A preliminary injection of PRP has a protective effect at subsequent influence of venom. In animals with hemisection the PRP increases the decreased activity of neurons on injury side. Taking into consideration the protective peculiarities of PRP in the relationship to snake venom and the possibility of the latter to stabilize and prolong the action of drugs (in the case of PRP) combined with them, it is supposed that the mentioned use of the combination in clinical practice will be perspective. The data obtained testify the PRP to be a neuroprotector against many toxic compounds formed in organism (glutamate, ceramid, beta-amyloid neurotoxisity, etc.). Investigations in this aspect are still in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Scharrer, E., and Scharrer, B. 1954. Hormones produced by neurosecretory cells. Res. Progr. In Hormone Res. 10:183.

    Google Scholar 

  2. Du Vigneaud, V., Ressler, C., and Tripett, S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem. 205:949-959.

  3. Galoyan, A. A. 1965. Some problems of hypothalamic regulation. Hayastan Publishers. Yerevan. 242p.

    Google Scholar 

  4. Galoyan, A. A., and Sahakian, F. M. 1971. Isolation of coronary dilatory hormones from neurosecretory granules of neurohypophysis. DAN SSSR. 201:483-485.

    Google Scholar 

  5. Markossian, K. A., Gurvits, B. Ya., and Galoyan, A. A. 1999. Isolation and identification of novel peptides from secretory granules of neurohypophysis. Neurochemistry (RAS and NAS RA), 16:22-25.

    Google Scholar 

  6. Galoyan, A. A., Aprikian, V. S., Markossian, K. A., Gurvits, B. Ya. 1998. Neurosecretion of cytokines by magnocellular cells of hypothalamus. Neurochemistry (Russia). 15:1-15.

    Google Scholar 

  7. Swanson, L. W. and Kuypers, H. G. J. M. 1980. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivision and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194:555-570.

    Google Scholar 

  8. Galoyan, A. A., et al. 1996. New polypeptides of hypothalamus: isolation and primary structure. Proc. NAS RA. 96: No. 2-4, 117-119.

    Google Scholar 

  9. Galoyan, A. A. 1997. Biochemistry of Novel Cardioactive Hormones and Immunomodulators of the Functional System Neurosecretory Hypothalamus-Endocrine Heart. Nauka Publishers, Moscow.

    Google Scholar 

  10. Karlsson, E. 1979. Snake venoms, Chemistry of Protein Toxins in Snake Venoms pages 159-212, in Chen-Yuan, (ed). Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  11. Slotta, K. 1955. Chemistry and biochemistry of snake venoms. Prog. Chem. Org. Nat. Prod. 12:406-465.

    Google Scholar 

  12. Kaiser, E., and Michel, H. 1958. Die Biochemie der tierischen Gifte, Franz. Deuticke, Wien.

    Google Scholar 

  13. Suzuki, T., and Iwanaga, S. 1970. Bradykinin, Kallidin, and Kallikrein. Handbook of Experimental Pharmacology pages 193-212, in Erdos, E. G. (ed). Vol. 25, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  14. Meaume, J. 1996. Les venins des serpents agents modificateurs de la coagulation sanguine. Toxicol. 4:25-58.

    Google Scholar 

  15. Minton, S. A. 1974. In: Venom Diseases (ed Thomas, Ch. C.), Springfield (III).

  16. Stenlake, J. B. 1986. New neuromuscular blocking agents. Handbook of Experimental Pharmacology pages 263-276, in Kharkevich, D. A. (ed)., Springer-Verlag, Berlin. 1.

    Google Scholar 

  17. Hughes R. 1986. Handbook of Experimental Pharmacology pages 259-543, in Kharkevich, D. A. (ed), Springer-Verlag, Berlin.

    Google Scholar 

  18. Bowman, W. C., and Sutherland, G. A. 1986. Handbook of Experimental Pharmacology pages 419-443, D. A. Kharkevich (ed). Springer-Verlag, Berlin.

    Google Scholar 

  19. Jankovic, J., and Hallett, M. 1994. Therapy and botulinum toxin, New York: Marcel Decker.

    Google Scholar 

  20. Cushman D. W. et al. 1980. Enzyme inhibitors and drugs. Pages 2310-2478, in Sandler, M. (ed). Macmillan, London.

    Google Scholar 

  21. Rudy, B. 1988. Diversity and ubiquity of K channels. Neuroscience. 25:729-749.

    Google Scholar 

  22. Potassium channels structure, classification, function and therapeutic potential. Cook (ed.) in 1990. Chichester, Ellis Horwood Ltd.

    Google Scholar 

  23. Sarkissian, J. S., Kipriyan, T. K., Grigorian, Y. Kh., Sarkissian, E. J., Amiryan, S. V., Chavushyan, V. A., and Avetisyan, Z. A. 1999. On influence of Vipera raddei Boettger 1898 venom on the activity of the rats spinal cord neurons in norm and pathology. Vestnik IAELPS 15:127-132, St-Petersburg (Yerevan).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galoyan, A.A., Kipriyan, T.K., Sarkissian, J.S. et al. Protection Against Snake Venom-Induced Neuronal Injury by the New Hypothalamic Neurohormone. Neurochem Res 25, 791–800 (2000). https://doi.org/10.1023/A:1007561306432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007561306432

Navigation