Skip to main content
Log in

The role of CMP-N-acetylneuraminic acid hydroxylase in determining the level of N-glycolylneuraminic acid in porcine tissues

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The biosynthesis of the sialic acid N-glycolylneuraminic acid (Neu5Gc) occurs by the action of cytidine monophosphate-N-acetylneuraminate (CMP-Neu5Ac) hydroxylase. Previous investigations on a limited number of tissues suggest that the activity of this enzyme governs the extent of glycoconjugate sialylation with Neu5Gc. Using improved analytical procedures and a panel of nine porcine tissues, each expressing different amounts of Neu5Gc, we have readdressed the issue of the regulation of Neu5Gc incorporation into glycoconjugates. The following parameters were measured for each tissue: the molar ratio Neu5Gc/Neu5Ac, the activity of the hydroxylase, and the relative amount of hydroxylase protein, as determined by enzyme-linked immunosorbent assay (ELISA). A positive correlation between the activity of the hydroxylase and the molar ratio Neu5Gc/Neu5Ac was observed for each tissue. In addition, the hydroxylase activity correlated with the amount of enzyme protein, though in heart and lung disproportionately large amounts of immunoreactive protein were detected. Taken together, the results suggest that the incorporation of Neu5Gc into glycoconjugates is generally controlled by the amount of hydroxylase protein expressed in a tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schauer R, Kamerling JP (1997) in Glycoproteins II (Montreuil J, Vliegenthart JFG, Schachter H, eds) pp 243–402. Amsterdam: Elsevier Science.

    Google Scholar 

  2. Kelm S, Schauer R (1997) In International Review of Cytology (Jeon KW, Jarvik JW, eds), Vol 175, pp 137–240. San Diego: Academic Press.

    Google Scholar 

  3. Corfield AP, Schauer R (1982) In Sialic Acids (Schauer R, ed) Cell Biology Monogr 10: 5–39. Wien New York: Springer-Verlag.

    Google Scholar 

  4. Schauer R, Stoll S, Reuter G (1991) Carbohydr Res 213: 353–59.

    Google Scholar 

  5. Bouhour D, Bouhours JF (1988) J Biol Chem 263: 15540–5.

    Google Scholar 

  6. Hokke CH, Bergwerff AA, van Dedem GWK, van Oostrum J, Kamerling JP, Vliegenthart JFG (1990) FEBS Lett 275: 9–14.

    Google Scholar 

  7. Shaw L, Schauer R (1988) Biol Chem Hoppe-Seyler 369: 477–86.

    Google Scholar 

  8. Shaw L, Schauer R (1989) Biochem J 263: 355–63.

    Google Scholar 

  9. Schlenzka W, Shaw L, Schneckenburger P, Schauer R (1994) Glycobiology 4: 675–83.

    Google Scholar 

  10. Kawano T, Kozutsumi Y, Kawasaki T, Suzuki A (1994) J Biol Chem 269: 9024–9.

    Google Scholar 

  11. Schlenzka W, Shaw L, Kelm S, Schmidt CL, Bill E, Trautwein AX, Lottspeich F, Schauer R (1996) FEBS Lett 385: 197–200.

    Google Scholar 

  12. Kozutsumi Y, Kawano T, Yamakawa T, Suzuki A(1990) J Biochem 108: 704–6.

    Google Scholar 

  13. Shaw L, Schneckenburger P, Schlenzka W, Carlsen J, Christiansen K, Jürgensen D, Schauer R. (1994) Eur J Biochem 219: 1001–11.

    Google Scholar 

  14. Bouhours JF, Bouhours D (1989) J Biol Chem 264: 16992–9.

    Google Scholar 

  15. Muchmore EA, Milewsky M, Varki A, Diaz S (1989) J Biol Chem 264: 20216–23.

    Google Scholar 

  16. Lepers A, Shaw L, Schneckenburger P, Cacan R, Verbert A, Schauer R (1990) Eur J Biochem 193: 715–23.

    Google Scholar 

  17. Lepers A, Shaw L, Cacan R, Schauer R, Montreuil J, Verbert A (1989) FEBS Lett 250: 245–50.

    Google Scholar 

  18. Shaw L, Yousefi6 S, Dennis JW, Schauer R (1991) GlycoconjugateJ 8: 434–44.

    Google Scholar 

  19. Muchmore EA (1992) Glycobiology 2: 337–43.

    Google Scholar 

  20. Kawano T, Koyama S, Takematsu H, Kozutsumi Y, Kawasaki H, Kawashima S, Kawasaki T, Suzuki A (1995) J Biol Chem 270: 16458–63.

    Google Scholar 

  21. Mawhinney TP, Chance DL (1994) Anal Biochem 223: 164–7.

    Google Scholar 

  22. Hara S, Yamaguchi M, Takemori Y, Furuhata K, Ogura H, Nakamura M (1989) Anal Biochem 179: 162–6.

    Google Scholar 

  23. Reuter G, Schauer R (1994) Meth Enzymol 230: 168–99.

    Google Scholar 

  24. Baumgarten H (1992) In Monoclonal Antibodies (Peters JH, Baumgarten H, eds) pp 264–71. New York: Springer Verlag.

    Google Scholar 

  25. Bieber F (1992) In Monoclonal Antibodies (Peters JH, Baumgarten H, eds) pp 299–303. New York: Springer Verlag.

    Google Scholar 

  26. Harlow E, Lane D (1988) Antibodies: a laboratory manual, pp 555–82. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  27. Bradford MM (1976) Anal Biochem 72: 248–54.

    Google Scholar 

  28. Stäsche R, Hinderlich S, Weise C, Effertz K, Lucka L, Moormann P, Reutter W (1997) J Biol Chem 272: 24319–24.

    Google Scholar 

  29. Shaw L, Schneckenburger P, Carlsen J, Christiansen K, Schauer R (1992) Eur J Biochem 206: 269–77.

    Google Scholar 

  30. Vergères G, Waskel L (1995) Biochimie 77: 604–20.

    Google Scholar 

  31. Kean EL (1991) Glycobiology 1: 441–7.

    Google Scholar 

  32. Fritsch M, Geilen CC, Reutter W (1996) J Chromatogr A 727: 223–30.

    Google Scholar 

  33. Walls L, Dennis J, Muchmore A (1995) Glycoconjugate J 12: 565.

    Google Scholar 

  34. Koyama S, Yamaji T, Takematsu H, Kawano T, Kozutsumi Y, Suzuki A, Kawasaki T (1996) Glycoconjugate J 13: 353–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malykh, Y.N., Shaw, L. & Schauer, R. The role of CMP-N-acetylneuraminic acid hydroxylase in determining the level of N-glycolylneuraminic acid in porcine tissues. Glycoconj J 15, 885–893 (1998). https://doi.org/10.1023/A:1006959016011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006959016011

Navigation