Skip to main content
Log in

Assembly of the regulatory complex of the 26S proteasome

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The 19S regulatory complex (RC) of 26S proteasomes is a 900–1000 kDa particle composed of 18 distinct subunits (S1–S15) ranging in molecular mass from 25 to 110 kDa. This particle confers ATP-dependence and polyubiquitin (polyUb) recognition to the 26S proteasome. The symmetry and homogenous structure of the proteasome contrasts sharply with the remarkable complexity of the RC. Despite the fact that the primary sequences of all the subunits are now known, insight has been gained into the function of only eight subunits. The six ATPases within the RC constitute a subfamily (S4-like ATPases) within the AAA superfamily and we have shown that they form specific pairs in vitro[1]. We have now determined that putative coiled-coils within the variable N-terminal regions of these proteins are likely to function as recognition elements that direct the proper placement of the ATPases within the RC. We have also begun mapping putative interactions between non-ATPase subunits and S4-like ATPases. These studies have allowed us to build a model for the specific arrangement of 9 subunits within the human regulatory complex. This model agrees with recent findings by Glickman et al. [2] who have reported that two subcomplexes, termed the base and the lid, form the RC of budding yeast 26S proteasomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richmond C, Gorbea C & Rechsteiner M (1997) J. Biol. Chem. 272: 13403–13411

    Google Scholar 

  2. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA & Finley D (1998) Cell 94: 615–623

    Google Scholar 

  3. Rechsteiner M (1998) The 26S Proteasome. In: Peters JM, Harris JR & Finley D (eds), Ubiquitin and the Biology of the Cell. Plenum Press Inc, New York, pp. 147–189.

    Google Scholar 

  4. Hershko A & Ciechanover A (1998) Annu. Rev. Biochem. 67: 425–479

    Google Scholar 

  5. Hoffman L, Pratt G & Rechsteiner M (1992) J. Biol. Chem. 267: 22362–22368

    Google Scholar 

  6. Chu-Ping M, Vu JH, Proske RJ, Slaughter CA & DeMartino GN (1994) J. Biol. Chem. 269: 3539–3547

    Google Scholar 

  7. Peter JM, Franke WW & Kleinschmidt JA (1994) J. Biol. Chem. 269: 7709–7718

    Google Scholar 

  8. Glickman MH, Rubin DM, Fried VA & Finley D (1998) Mol. Cell. Biol. 18: 3149–3162

    Google Scholar 

  9. Udvardy A (1993) J. Biol. Chem. 268: 9055–9062

    Google Scholar 

  10. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W & Huber R (1995) Science 268: 533–539

    Google Scholar 

  11. Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD & Huber R (1997) Nature 386: 463–471

    Google Scholar 

  12. Seemuller E, Lupas A, Stock D, Löwe J, Huber R & Baumeister W (1995) Science 268: 579–582

    Google Scholar 

  13. Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059–7061

    Google Scholar 

  14. Armon T, Ganoth D & Hershko A (1990) J. Biol. Chem. 265: 20723–20726

    Google Scholar 

  15. Ugai S, Tamura T, Tanahashi N, Takai S, Komi N, Chung CH, Tanaka K & Ichihara A (1993) J. Biochem. (Tokyo) 113: 754–768

    Google Scholar 

  16. Kanayama HO, Tamura T, Ugai S, Kagawa S, Tanahashi N, Yoshimura T, Tanaka K & Ichihara A (1992) Eur. J. Biochem. 206: 567–578

    Google Scholar 

  17. Hoffman L & Rechsteiner M (1996) J. Biol. Chem. 271: 32538–32545

    Google Scholar 

  18. Eytan E, Armon T, Heller H, Beck S & Hershko A (1993) J. Biol. Chem. 268: 4668–4674

    Google Scholar 

  19. Lam YA, Xu W, DeMartino GN & Cohen RE (1997) Nature 385: 737–740

    Google Scholar 

  20. Confalonieri F & Duguet M (1995) Bioessays 17: 639–650

    Google Scholar 

  21. Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–362

    Google Scholar 

  22. Gordon C, McGurk G, Dillon P, Rosen C & Hastie ND (1993) Nature 366: 355–357

    Google Scholar 

  23. Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S & Finley D (1998) EMBO J. 17: 4909–4919

    Google Scholar 

  24. Asano K, Vornlocherm HP, Richter-Cook NJ, Merrick WC, Hinnebusch AG & Hershey JW (1997) J. Biol. Chem. 272: 27042–27052

    Google Scholar 

  25. Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M & Dubiel W(1998) FASEB J. 12: 469–478

    Google Scholar 

  26. Deveraux Q, van Nocker S, Mahaffey D, Vierstra R & Rechsteiner M (1995) J. Biol. Chem. 270: 29660–29663

    Google Scholar 

  27. van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell. Biol. 16: 6020–6028

    Google Scholar 

  28. Peters JM, Harris JR & Kleinschmidt JA (1991) Eur. J. Cell Biol. 56: 422–432

    Google Scholar 

  29. Walz J, Erdmann A, Kania M, Typke D, Koster AJ & Baumeister W (1998) J. Struct. Biol. 121: 19–29

    Google Scholar 

  30. Ikai A, Nishigai M, Tanaka K & Ichihara A (1991) FEBS Lett. 292: 21–24

    Google Scholar 

  31. Yoshimura T, Kameyama K, Takagi T, Ikai A, Tokunaga F, Koide T, Tanahashi N, Tamura T, Cejka Z, Baumeister W, Tanaka K & Ichihara A (1993) J. Struct. Biol. 111: 200–211

    Google Scholar 

  32. Adams GM, Falke S, Goldberg AL, Slaughter CA, DeMartino GN & Gogol EP (1997) J. Mol. Biol. 273: 646–657

    Google Scholar 

  33. Fujinami K, Tanahashi N, Tanaka K, Ichihara A, Cejka Z, Baumeister W, Miyawaki M, Sato T & Nakagawa H (1994) J. Biol. Chem. 269: 25905–25910

    Google Scholar 

  34. Deveraux Q, Jensen C & Rechsteiner M (1995) J. Biol. Chem. 270: 23726–23729

    Google Scholar 

  35. Yu RC, Hanson PI, Jahn R & Brunger AT (1998) Nat. Struct. Biol. 5: 803–811

    Google Scholar 

  36. Peters JM, Walsh MJ& Franke WW(1990) EMBO J. 9: 1757–1767

    Google Scholar 

  37. Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Muller SA, Engel A, De Mot R & Baumeister W (1998) J. Mol. Biol. 277: 13–25

    Google Scholar 

  38. Wilkinson CR, Wallace M, Seeger M, Dubiel W & Gordon C (1997) J. Biol. Chem. 272: 25768–25777

    Google Scholar 

  39. Saira Mian I (1993) Trends Biochem. Sci. 18: 125–127

    Google Scholar 

  40. Lupas A, Van Dyke M & Stock J (1991) Science 252: 1162–1164

    Google Scholar 

  41. Lupas A (1996) Trends Biochem. Sci. 21: 375–382

    Google Scholar 

  42. Rechsteiner M, Hoffman L & Dubiel W (1993) J. Biol. Chem. 268: 6065–6068

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbea, C., Taillandier, D. & Rechsteiner, M. Assembly of the regulatory complex of the 26S proteasome. Mol Biol Rep 26, 15–19 (1999). https://doi.org/10.1023/A:1006957802028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006957802028

Navigation