Skip to main content
Log in

The Ca2+ threshold for the mitochondrial permeability transition and the content of proteins related to Bcl-2 in rat liver and Zajdela hepatoma mitochondria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Zajdela hepatoma mitochondria were able to accumulate two to five times more Ca2+ than rat liver mitochondria before the permeability transition was induced. Pulses of Ca2+ were given in series to determine the Ca2+ threshold by recording changes in [Ca2+] and membrane potential, the permeability transition causing the release of accumulated Ca2+ and collapse of the membrane potential. Hepatoma mitochondria had lower Ca2+ efflux rates, higher net Ca2+ uptake rates and lower phosphorylation rates than liver mitochondria. Since the differences in regard to induction of the permeability transition might be due to higher expression of the Bcl-2 protein in hepatoma cells than in hepatocytes, the transcription of Bcl-2 and the proteins reacting with a Bcl-2 polyclonal antiserum were estimated by Northern and Western blotting, respectively. Hepatoma cells had two Bcl-2 specific mRNA bands of 7 and 2.4 kb, and substantial amounts of the Bcl-2 protein, whereas in liver cells and mitochondria these were not detected. Both cell lines had a reactive band at 19-20 kDa, and hepatocytes a small band at 31-32 kDa. Bcl-2 antibodies stimulated the permeability transition potently in hepatoma mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Williams TG: Programmed cell death: Apoptosis and oncogenesis. Cell 65: 1097–1098, 1991

    PubMed  Google Scholar 

  2. Reed JC, Miyashita T, Takayama S, Wang H-G, Sato T, Rajewsi S, Aime-Sempe C, Bodrug S, Kitada S, Hanada M: BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 60: 23–32, 1996

    PubMed  Google Scholar 

  3. Fisher DE: Apoptosis in cancer therapy: crossing the threshold. Cell 78: 539–542, 1994

    PubMed  Google Scholar 

  4. Kroemer G: The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med 6: 614–620, 1997

    Google Scholar 

  5. Hockenbery DM, Zutter M, Hickey W, Nahm M, Korsmeyer SJ: BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death, Proc Natl Acad Sci USA 88: 6961–6965, 1991

    PubMed  Google Scholar 

  6. Monaghan P, Robertson D, Amos TAS, Dyer MJS, Mason DY, Greaves MF: Ultrastructural localization of BCL-2 protein. J Histochem Cytochem 40: 1819–1825, 1992

    PubMed  Google Scholar 

  7. Riparbelli MG, Callaini G, Tripodi SA, Cintorino M, Tosi P, Dallai R: Localization of the Bcl-2 protein to the outer mitochondrial membrane by electron microscopy. Exp Cell Res 221: 363–369, 1995

    PubMed  Google Scholar 

  8. Boise LH, Gottschalk AR, Quintans J, Thompson CB: Bcl-2 and Bcl-2-related proteins in apoptosis regulation. Curr Top Microbiol Immunol 200: 107–121, 1995

    PubMed  Google Scholar 

  9. Marchetti P, Hirsch T, Zamzami N, Castedo M, Decaudin D, Susin SA, Masse B, Kroemer G: Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol 157: 4830–4836, 1996

    PubMed  Google Scholar 

  10. Petit PX, Susin S-A, Zamzami N, Mignotte B, Kroemer G: Mitochondria and programmed cell death: Back to future. FEBS Lett 396. 7–13, 1996

    PubMed  Google Scholar 

  11. Murphy AN, Brodesen DE, Cortopassi G, Wang E, Fiskum G: Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc Natl Acad Sci USA 93: 9893–9898, 1996

    PubMed  Google Scholar 

  12. Leizt M, Nicotera P: The shape of cell death. Biochem Biophys Res Commun 236: 1–9, 1997

    PubMed  Google Scholar 

  13. Gunter TE, Pfeiffer DR: Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–786, 1990

    PubMed  Google Scholar 

  14. Trump BF, Berezesky IK: Calcium-mediated cell injury and cell death. FASEB J 9. 219–228, 1995

    PubMed  Google Scholar 

  15. Richter C, Schweizer M, Cossarizza A, Franceschi C: Control of apoptosis by the cellular ATP level. FEBS Lett 378: 107–110, 1996

    Article  PubMed  Google Scholar 

  16. Randeli W, Moreadith W, Fiskum G: Isolation of mitochondria from ascites tumor cells permeabilized with digitonin. Anal Biochem 137: 360–367, 1984

    PubMed  Google Scholar 

  17. Johnson D, Lardy HA: Isolation of liver or kidney mitochondria. Meth Enzymol 10: 94–96, 1967

    Google Scholar 

  18. Saris N-EL, Allshire A: Calcium transport in mitochondria. Meth Enzymol 174: 68–84, 1989

    PubMed  Google Scholar 

  19. Kamo N, Muratsugu M, Hongoh R, Kobatake Y: Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49: 105–121, 1979

    PubMed  Google Scholar 

  20. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 4: 680–685, 1970

    Google Scholar 

  21. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of protein from polyacrylamid gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354, 1979

    PubMed  Google Scholar 

  22. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159, 1987

    Article  PubMed  Google Scholar 

  23. Sambrook J, Fretsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Second Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989

    Google Scholar 

  24. Zhao M, Zhang NX, Economou M, Blaha I, Laissue JA, Zimmermann A: Immunohistochemical detection of Bcl-2 protein is expressed in hepatocellular carcinomas but not in liver cell dysplasia. Histopathology 25: 237–245, 1994

    PubMed  Google Scholar 

  25. Bygrave FL: Calcium transport in mitochondria isolated from normal and injured tissue. In: LJ Anghileri, AM Tuffet-Anghileri (eds). The Role of Calcium in Biological Systems. CRC Press Inc., Boca-Raton, Florida, 1982, 1, pp 121–145

    Google Scholar 

  26. Zinchenko VP, Teplova VV, Evtodienko Yu V: Membrane-bound calcium in the mitochondria of Ehrlich ascites cells. Bull Exp Biol Med (in Russian) 11: 563–566, 1985

    Google Scholar 

  27. Saris N-EL, Teplova VV, Azarashvili TS, Evtodienko Yu V, Virtanen I: The high calcium ion uptake capacity of Ehrlich ascites tumour cell mitochondria is due to inhibition of the permeability transition and phospholipase A2 activity by magnesium. Magnesium Res 11: 155–160, 1998

    Google Scholar 

  28. Evtodienko Yu V, Teplova V, Khawaja J, Saris N-EL: The Ca2+-induced permeability transition pore is involved in Ca2+-induced mitochondrial oscillations. A study on permeabilized Ehrlich ascites tumour cells. Cell Calcium 15: 1–10, 1994

    PubMed  Google Scholar 

  29. Szabó I, Bernardi P, Zoratti M: Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem 267: 2940–2946, 1992

    PubMed  Google Scholar 

  30. Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ: Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251, 1993

    PubMed  Google Scholar 

  31. Benedict M, Tewari M, Shayman JA, Dixit VM: Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogen 10: 2297–2305, 1995

    Google Scholar 

  32. Richter C: Prooxidants and mitochondrial calcium: their relationship to apoptosis and oncogenesis. FEBS Lett 325: 104–107, 1993

    PubMed  Google Scholar 

  33. Luciaková K, Kužela S: Increased content of natural ATPase inhibitor in tumor mitochondria. FEBS Lett 177: 85–88, 1984

    PubMed  Google Scholar 

  34. Bogutska K, Teplova V, Wojtczak L, Evtodienko Yu: Inhibition by calcium of the hydrolysis and synthesis of ATP in Ehrlich ascites tumour mitochondria: relation to the Crabtree effect. Biochim Biophys Acta 1228: 261–266, 1995

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evtodienko, Y.V., Teplova, V.V., Azarashvily, T.S. et al. The Ca2+ threshold for the mitochondrial permeability transition and the content of proteins related to Bcl-2 in rat liver and Zajdela hepatoma mitochondria. Mol Cell Biochem 194, 251–256 (1999). https://doi.org/10.1023/A:1006913526643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006913526643

Navigation