Skip to main content
Log in

A review of progress towards elucidating the role of protein kinase CK2 in polymerase III transcription: Regulation of the TATA binding protein

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have investigated the molecular basis of the requirement for protein kinase CK2 in nuclear transcription in Saccharomyces cerevisiae. In vivo and in vitro analysis has demonstrated that CK2 is required for efficient transcription of the tRNA and 55 rRNA genes by RNA polymerase III. This suggests that a component of the pol III transcription machinery is regulated by CK2. We tested this possibility by a biochemical complementation approach in which components of the pol III transcription machinery from wild type cells were tested for their ability to rescue transcription in extract from a conditionally CK2-deficient mutant. We found that pol III transcription initiation factor IIIB (TFIIIB) fully restores transcription in CK2-deficient extract. Further in vitro studies revealed that TFIIIB must be phosphorylated to be active, that a single subunit of wild type TFIIIB, the TATA binding protein (TBP), is efficiently phosphorylated by CK2, and that recombinant TBP and a limiting amount of CK2 rescues transcription in CK2-deficient extract. We conclude that TBP is the physiological target of CK2 among the components of the pol III transcription machinery. The implications of this result are discussed in the context of previous data concerning the regulation of TFIIIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinna LA: Casein kinase 2: An ‘eminence grise’ in cellular regulation? Biochim Biophys Acta 1054: 267–284, 1990

    PubMed  Google Scholar 

  2. Tuazon PT, Traugh JA: Casein kinase I and II-multipotential serine protein kinases: Structure, function, and regulation. Adv Second Mess Phosphoprotein Res 23: 123–164, 1991

    Google Scholar 

  3. Litchfield DW, Lüscher B: Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem 127/128: 187–199, 1993

    Google Scholar 

  4. Allende JE, Allende CC: Protein kinase CK2: An enzyme with multiple substrates and a puzzling regulation. FASEB J 9: 313–323, 1995

    PubMed  Google Scholar 

  5. Wilson LK, Dhillon N, Thorner J, Martin GS: Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J Biol Chem 272: 12961–12967, 1997

    PubMed  Google Scholar 

  6. Voit R, Kuhn A, Sander EE, Grummt I: Activation of mammalian ribosomal gene transcription requires phosphorylation of the nucleolar transcription factor UBF. Nucleic Acids Res 23: 2593–2599, 1995

    PubMed  Google Scholar 

  7. Fan H, Sakulich AL, Goodier JL, Zhang X, Qin J, Maraia RJ: Phosphorylation of the human La antigen on serine 366 can regulate recycling of RNA polymerase III transcription complexes. Cell 88: 707–715, 1997

    PubMed  Google Scholar 

  8. Hockman DJ, Schultz MC: Casein kinase II is required for efficient transcription by RNA polymerase III. Mol Cell Biol 16: 892–898, 1995

    Google Scholar 

  9. Geiduschek EP, Kassavetis GA: RNA polymerase III transcription complexes. In: S.L. McKnight, K. Yamamoto (eds).Transcriptional Regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1992, pp 247–280

    Google Scholar 

  10. Willis IM: RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem 212: 1–11, 1993

    PubMed  Google Scholar 

  11. Ghavidel A, Schultz MC: Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein. Genes and Development 11: 2780–2789, 1997

    PubMed  Google Scholar 

  12. Kumar A, Kassavetis GA, Geiduschek EP, Hambalko M, Brent CJ: Functional dissection of the B” component of RNA polymerase III transcription factor IIIB: A scaffolding protein with multiple roles in assembly and initiation of transcription. Mol Cell Biol 17: 1868–1880, 1997

    PubMed  Google Scholar 

  13. Kassavetis GA, Riggs DL, Negri R, Nguyen LH, Geiduschek EP: Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol Cell Biol 9: 2551–2566, 1989

    PubMed  Google Scholar 

  14. Riggs DL, Nomura M: Specific transcription of Saccharomyces cerevisiae 35S rDNA by RNA polymerase I in vitro. J Biol Chem 265: 7596–7603, 1990

    PubMed  Google Scholar 

  15. Bidwai AP, Reed JC, Glover CVC: Casein kinase II of Saccharomyces cerevisiae contains two distinct regulatory subunits, β and β′. Arch Biochem Biophys 309: 348–355, 1994

    PubMed  Google Scholar 

  16. Hanna DE, Rethinaswamy A, Glover CVC: Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem 270: 25905–25914, 1995

    PubMed  Google Scholar 

  17. Cormack BP, Struhl K: Regional codon randomization: Defining a TATA-binding protein surface required for RNA polymerase III transcription. Science 262: 244–248, 1993

    PubMed  Google Scholar 

  18. Nikolov DB, Hu S-H, Lin J, Gasch A, Hoffmann A, Horikoshi M, Chua N-H, Roeder RG, Burley SK: Crystal structure of TFIID TATA-box binding protein. Nature 360: 40–46, 1992

    PubMed  Google Scholar 

  19. Padmanabha R, Chen-Wu JL-P, Hanna DE, Glover CVC: Isolation, sequencing, and disruption of the yeast CKA2 gene: Casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10: 4089–4099, 1990

    PubMed  Google Scholar 

  20. Bidwai AP, Reed JC, Glover, CVC: Cloning and disruption of CKB1, the gene encoding the 38-kDa β subunit of Saccharomyces cerevisiae casein kinase II (CKII). J Biol Chem 270: 10395–10404, 1995

    PubMed  Google Scholar 

  21. Tower J, Sollner-Webb B: Polymerase III transcription factor B activity is reduced in extracts of growth-restricted cells. Mol Cell Biol 8: 1001–1005, 1988

    PubMed  Google Scholar 

  22. White RJ, Stott D, Rigby PW: Regulation of RNA polymerase III transcription in response to F9 embryonal carcinoma stem cell differentiation. Cell 59: 1081–1092, 1989

    PubMed  Google Scholar 

  23. Hartl P, Gottesfeld J, Forbes DJ: Mitotic repression of transciption in vitro. J Cell Biol 120: 613–624, 1993

    PubMed  Google Scholar 

  24. Gottesfeld JM, Wolf VJ, Dang T, Forbes, DJ, Hartl, P: Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component. Science 263: 81–84, 1994

    PubMed  Google Scholar 

  25. Dieci G, Duimio L, Peracchia G, Ottonello S: Selective inactivation of two components of the multiprotein transcription factor TFIIIB in cycloheximide growth-arrested yeast cells. J Biol Chem 270: 13476–13482, 1995

    PubMed  Google Scholar 

  26. Sethy I, Moir RD, Librizi M, Willis IM: In vitro evidence for growth regulation of tRNA transcription in yeast. A role for transcription factor (TF) IIIB70 and TFIIIC. J Biol Chem 270: 28463–28470, 1995

    PubMed  Google Scholar 

  27. White RJ, Gottlieb TM, Downes CS, Jackson SP: Mitotic regulation of a TATA-binding-protein-containing complex. Mol Cell Biol 15: 1983–1992, 1995

    PubMed  Google Scholar 

  28. White RJ, Gottlieb TM, Downes CS, Jackson SP: Cell cycle regulation of RNA polymerase III transcription. Mol Cell Biol 15: 6653–6662, 1995

    PubMed  Google Scholar 

  29. Segil N, Guermah M, Hoffman A, Roeder RG, Heintz N: Mitotic regulation of TFIID: Inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev 10: 2389–2400, 1996

    PubMed  Google Scholar 

  30. Leresche A, Wolf VJ, Gottesfeld JM: Repression of RNA polymerase II and III transcription during M phase of the cell cycle. Exp Cell Res 229: 282–288, 1996

    PubMed  Google Scholar 

  31. Trivedi A, Vilalta A, Gopalan S, Johnson DL: TATA-Binding Protein is limiting for both TATA-containing and TATA-lacking RNA polymerase III promoters in Drosophila cells. Mol Cell Biol 16: 6909–6916, 1996

    PubMed  Google Scholar 

  32. Reddy P, Hahn S: Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region. Cell 65: 349–357, 1991

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghavidel, A., Hockman, D.J. & Schultz, M.J. A review of progress towards elucidating the role of protein kinase CK2 in polymerase III transcription: Regulation of the TATA binding protein. Mol Cell Biochem 191, 143–148 (1999). https://doi.org/10.1023/A:1006885522221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006885522221

Navigation