Skip to main content
Log in

Molecular characterization and expression study of a histidine auxotrophic mutant (his1−) of Nicotiana plumbaginifolia

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The histidine auxotroph mutant his1 isolated from Nicotiana plumbaginifolia haploid protoplasts was first characterized to be deficient for the enzyme histidinol phosphate aminotransferase that is responsible for one of the last steps of histidine biosynthesis. Expression of the mutated gene at the RNA level was assessed by northern analysis of various tissues. Transcriptional activity was unimpaired by the mutation and, in contrast, a higher level of expression was obtained when compared to the wild-type. The cDNA sequence encoding the mutated gene was isolated by RT-PCR and compared to the wild-type gene. A single point mutation corresponding to the substitution of a G nucleotide by A was identified at position 1212 starting from the translation site. The alignment of the deduced amino acid sequences from the mutated and wild-type gene showed that this mutation resulted in the substitution of an Arg by a His residue at position 381. This Arg residue is a conserved amino acid for histidinol phosphate aminotransferase of many species. These results indicate that the identified mutation results in an altered histidinol phosphate aminotransferase enzyme that is unable to convert the substrate imidazole acetol phosphate to histidinol phosphate and thereby leads to the blockage of histidine biosynthesis. Possible consequences of this blockage on the expression of other amino acid biosynthesis genes were evaluated by analysing the expression of the dhdps gene encoding dihydrodipicolinate synthase, the first key enzyme of the lysine pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albani, D., Hammond-Kosack, MCU., Smith, C., Conlan, S., Colot, V., Holdsworth, M. and Bevan, M.W. 1997. The wheat. transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9: 171–184.

    Google Scholar 

  • Bieleski, RL. and Turner, NA. 1966. Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Anal. Biochem. 17: 278–293.

    Google Scholar 

  • Bourgin, JP., Chupeau, Y. and Misonier, C. 1979. Plant regeneration from mesophyll protoplasts of several Nicotiana species. Physiol. Plant. 45: 288–292.

    Google Scholar 

  • Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Bright, S., Featherstone, L. and Milfin, B. 1979. Lysine metabolism in a barley mutant resistant to S(2-aminoethyl) cysteine. Planta 146: 629–633.

    Google Scholar 

  • Brown, G. and Williamson, JM. 1987. Biosynthesis of folic acid, riboflavin, thiamine, and pantothenic acid. In: F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter and H.E. Umbarger (Eds.) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1, American Society for Microbiology, Washington, D.C., pp. 521–538.

    Google Scholar 

  • El Malki, F., Frankard, V. and Jacobs, M. 1998. Molecular cloning and expression of a cDNA sequence encoding histidinol phosphate aminotransferase from Nicotiana tabacum. Plant Mol. Biol. 37: 1013–1022.

    Google Scholar 

  • Galili, G. 1995. Regulation of lysine and threonine synthesis. Plant Cell 7: 899–906.

    Google Scholar 

  • Ghislain, M., Frankard, V., Vandenbossche, D., Matthews, B.F. and Jacobs, M. 1994. Molecular analysis of the aspatrate kinase-homoserine dehydrogenase gene from Arabidopsis thaliana. Plant Mol. Biol. 24: 835–851.

    Google Scholar 

  • Guyer, D., Patton, D. and Ward, E. 1995. Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc. Natl. Acad. Sci. USA 92: 4997–5000.

    Google Scholar 

  • Hinnebusch, A.G. 1992. Transcriptional and translational regulation of gene expredssion in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Prog. Nucl. Acid Res. Mol. Biol. 38: 195–240.

    Google Scholar 

  • Horsch, R.B. and King, J. 1983. Isolation of an isoleucine-valine-requiring auxotroph from Datura innoxia cell culture by arsenate counter selection. Planta 159: 12–17.

    Google Scholar 

  • Fujimori, K. and Ohta, D. 1998a. Isolation and characterization of a histidine biosynthetic gene in Arabidopsis encoding a polypep-tide with two separate domains for phosphoribosyl-ATP py-rophosphohydrolase and phosphoribosyl-AMP cyclohydrolase. Plant Physiol. 118: 275–283.

    Google Scholar 

  • Fujimori, K. and Ohta, D. 1998b. An Arabidopsis cDNA encoding a bifunctional glutamine amidotransferase/cyclase suppresses the histidine auxotrophy of a Saccharomyces cerevisiae his7 mutant. FEBS Lett. 428: 229–234.

    Google Scholar 

  • Fujimori, K., Tada, S. and Ohta, D. 1998. Molecular cloning and characterization of the gene encoding N′-[(5′-phosphoribosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (BBM II) isomerase (EC 5.3.1.16) from Arabidopsis thaliana. Mol. Gen. Genet. 259: 216–223.

    Google Scholar 

  • Maniatis, T., Tritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Martin, RG. 1963. The first enzyme in histidine biosynthesis: the nature of feedback inhibition by histidine. J. Biol. Chem. 238: 257–268.

    Google Scholar 

  • Martin, R.G., Berberich, M.A., Ames, B.N., Davis, W.W., Gold-berger, R.F. and Yourno, J.D. 1971. Enzymes and intermediates at histidine biosynthesis in Salmonella typhimurium.Meth. Enzymol. 17 B: 3–44.

    Google Scholar 

  • Mauri, I., Maddaloni, M., Lohmer, S., Motto, M., Salamini, F., Thompson, R. and Martegani, E. 1993. Functional expression of the transcription activator Opaque-2 of Zea mays in transformed yeast. Mol. Gen. Genet. 241: 319–326.

    Google Scholar 

  • Mori, I., Fonné-Pfister, R., Matsunaga, S., Tada, S., Kimura, Y., Iwasaki, G., Mano, J., Hatano, M., Nakano, T., Koizumi, S., Scheidegger, A., Hayakawa, K. and Ohta, D. 1995. A novel class of herbicides. Plant Physiol. 107: 719–723.

    Google Scholar 

  • Mourad, G. and King, J. 1995. L-O-Methylthreonine-resistant mu-tant of Arabidopsis defective in isoleucine feedback regulation. Plant Physiol. 107: 43–52.

    Google Scholar 

  • Müller, M. and Knudsen, S. 1993. The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J. 4: 343–355.

    Google Scholar 

  • Nagai, A., Ward, E., Beck, J., Tada, S., Chang, J-Y., Scheidegger, A. and Ryals, J. 1991. Structural and functional conservation of histidinol dehydrogenase between plants and microbes. Proc. Natl. Acad. Sci. USA 88: 4133–4137.

    Google Scholar 

  • Negrutiu, I., De Brouwer, D., Dirks, R. and Jacobs, M. 1985. Amino acid auxotrophs from protoplast cultures of N. plumbaginifolia Viviani. Mol. Gen. Genet. 199: 330–337.

    Google Scholar 

  • Neuhard, J. and Nygaard, P. 1987. Purines and pyrimidines. In: F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter and H.E. Umbarger (Eds.) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1, American Society for Microbiology, Washington, D.C., pp. 445–473.

    Google Scholar 

  • Niyogi, K.K. and Fink, G.R. 1992. Two anthranilate sybthase genes in Arabidopsis: disease-related regulation of the tryptophan pathway. Plant Cell 4: 721–733.

    Google Scholar 

  • Peterman, T.M. and Goodman, H.M. 1991. The glutamine synthetase gene family of Arabidopsis thaliana: light regulation and differential expression in leaves, root and seeds. Mol. Gen. Genet. 330: 145–154.

    Google Scholar 

  • Pittard, A.J. 1987. Biosynthesis of the aromatic amino acids. In: F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Maagsanik, M. Schaechter and H.E. Umbarger (Eds.) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1, American Society for Microbiology, Washington, D.C., pp. 368–394.

    Google Scholar 

  • Ohta, D., Fujimori, K., Mizutani, M., Nakayama, Y., Kunpaisal-Hashimoto, R., Münzer, S. and Kozaki, A. 2000. Molecular cloning and characterization of ATP-phosphoribosyl transferase from Arabidopsis, a key enzyme in the histidine biosynthetic pathway. Plant Physiol. 122: 907–914.

    Google Scholar 

  • Rerie, W.G., Whitecross, M. and Higgins, T.J.V. 1991. Developmental and environmental regulation of pea legumin genes in tobacco. Mol. Gen. Genet. 225: 148–157.

    Google Scholar 

  • Singh, B.K. 1999. Plant Amino Acids: Biochemistry and Biotechnology. American Cyanamid Company, Princeton, NJ.

    Google Scholar 

  • Tada, S., Hatano, M., Nakayama, Y., Volrath, S., Guyer, D., Ward, E., and Ohta, D. 1995. Insect cell expression of recombinant imidazole glycerol phosphate dehydratase of Arabidopsis and wheat and inhibition by triazole herbicides. Plant Physiol. 109: 153–159.

    Google Scholar 

  • Tice-Baldwin, K., Fink, G.R. and Arndt, K.T. 1989. BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science 246: 931–935.

    Google Scholar 

  • Umbarger, H.E. 1978. Amino acid biosynthesis. Annu. Rev. Biochem. 47: 533–606.

    Google Scholar 

  • Winkler, M.E. 1987. Biosynthesis of histidine. In: F.C. Neid-hardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter and H.E. Umbarger (Eds.) Escherichia coli and Salmonella ty-phimurium: Cellular and Molecular Biology, American Society for Microbiology, Washington, D.C., pp: 399–411.

    Google Scholar 

  • Zhao, J. and Last, R.L. 1996. Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8: 2235–2244.

    Google Scholar 

  • Zhao, J., Williams, C.C. and Last, R.L. 1998. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10: 359–370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Malki, F., Jacobs, M. Molecular characterization and expression study of a histidine auxotrophic mutant (his1−) of Nicotiana plumbaginifolia. Plant Mol Biol 45, 191–199 (2001). https://doi.org/10.1023/A:1006493021557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006493021557

Navigation