Skip to main content
Log in

Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The NAD(P)H nitrate reductase (NR) from Chlamydomonas reinhardtii is encoded by the structural gene Nia1. Numerous data from the literature indicate that this enzyme is submitted to complex regulation mechanisms involving multiple controls at transcriptional and post-transcriptional levels. To specifically investigate the regulation of the Nia1 gene at the transcriptional level, NR+ and NR transformed cells harbouring the Nia1:Ars construct (Nia1 promoter fused to the arylsulfatase (ARS)-encoding Ars reporter gene) were cultivated under various experimental conditions and the ARS activities were recorded. ARS levels were very low in cells grown in the presence of NH4Cl and dramatically increased on agar medium deprived of any nitrogen source or containing nitrate, nitrite, urea, arginine or glutamine. Compared to nitrogen-free medium, a slight positive effect of nitrate in the NR+ strain and a significant negative effect of nitrite in both NR+ and NR strains were observed. The ARS activities were high in the light and very low in the dark or in the light in the presence of DCMU, indicating that Nia1 transcription is strikingly dependent on photosynthetic activity. Acetate used as a carbon source in the dark did not substitute for light in stimulating Nia1:Ars expression. Inactivation of NR by tungstate treatment of the NR+ strain resulted in a dramatic increase of ARS level suggesting that in Chlamydomonas, like in higher plants, active NR negatively regulates the transcription of the NR structural gene. Deleting the major part of the Nia1 leader sequence still present in the chimeric gene resulted in a decrease of ARS level but did not modify the regulation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, M. and Loppes, R. 1998. Use of the ARG7 gene as an insertional mutagen to clone PHON24, a gene required for derepressible neutral phosphatase activity in Chlamydomonas reinhardtii. Mol. Gen. Genet. 258: 123–132.

    Google Scholar 

  • Ares, M. and Howell, S.H. 1982. Cell cycle stage-specific accu-mulation of mRNAs encoding tubulin and other polypeptides in Chlamydomonas. Proc. Natl. Acad. Sci. USA 79: 5577–5581.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantifi-cation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Callacci, J. and Smarrelli, J. 1991. Regulation of the inducible ni-trate reductase isoform from soybeans. Biochim. Biophys. Acta 1088: 127–130.

    Google Scholar 

  • Chen, Q. and Silflow, C.D. 1996. Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii. Plant Physiol. 112: 987–996.

    Google Scholar 

  • Cheng, C.L., Acedo, G.N., Cristinsin, M. and Conkling, M.A. 1992. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA 89: 1861–1864.

    Google Scholar 

  • Crawford, N.M., Campbell, W.H. and Davis, R.W. 1986. Nitrate re-duction from squash: cDNA cloning and nitrate regulation. Proc. Natl. Acad. Sci. USA 83: 8073–8076.

    Google Scholar 

  • Davies, D.R. and Plaskitt, A. 1971. Genetical and structural analy-sis of cell-wall formation in Chlamydomonas reinhardtii. Genet. Res. 17: 33–43.

    Google Scholar 

  • Davies, J.P., Weeks, D.P. and Grossman, A.R. 1992. Expression of the arylsulfatase gene from the β2-tubulin promoter in Chlamydomonas reinhardtii. Nucl. Acids Res. 20: 2959–2965.

    Google Scholar 

  • de Hostos, E.L., Togasaki, R.K. and Grossman, A.R. 1988. Pu-rification and biosynthesis of a derepressible periplasmic aryl-sulphatase from Chlamydomonas reinhardtii. J. Cell Biol. 106: 29–37.

    Google Scholar 

  • de Hostos, E.L., Schilling, J. and Grossman, A.R. 1989. Structure and expression of the gene encoding the periplasmic arylsul-phatase of Chlamydomonas reinhardtii. Mol. Gen. Genet. 218: 229–239.

    Google Scholar 

  • Deng, M., Moureaux, T. and Caboche, M. 1989. Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene.-Plant Physiol. 91: 304–309.

    Google Scholar 

  • Deng, M.D., Moureaux, T., Cherel, I., Boutin, J.P. and Caboche, M. 1991. Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase. Plant Physiol. Biochem. 29: 239–247.

    Google Scholar 

  • Dionisio-Sese, M., Fukuzawa, H. and Miyachi, S. 1990. Light-induced carbonic anhydrase expression in Chlamydomonas rein-hardtii. Plant Physiol. 94: 1103–1110.

    Google Scholar 

  • Dunn-Coleman, N.S., Smarrelli, J. and Garrett, R.H. 1984.Nitrate assimilation in eukaryotic cells. Int. Rev. Cytol. 92: 1–50.

    Google Scholar 

  • Fernández, E. and Cárdenas, J. 1982. Regulation of the nitrate-reducing system enzymes in wild and mutant strains from Chlamydomonas reinhardtii. Mol. Gen. Genet. 186: 164–169.

    Google Scholar 

  • Fernández, E. and Cárdenas, J. 1989. Genetic and regulatory aspects of nitrate assimilation in algae. In: J.L. Wray and J.R. Kinghorn (Eds.), Molecular and Genetic Aspects of Nitrate Assimilation, Oxford University Press, Oxford, pp. 101–124.

  • Fernández, E., Galván, A. and Quesada, A. 1998. Nitrogen assim-ilation and its regulation. In: J.-D. Rochaix, M. Goldschmidt-Clermont and S. Merchant (Eds.), Molecular Biology of Chlamy-domonas: Chloroplasts and Mitochondria, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 637–674.

  • Fernández, E. and Matagne, R.F. 1986. In vivo complementa-tion analysis of nitrate reductase-deficient mutants in Chlamy-domonas reinhardtii. Curr. Genet. 10: 397–403.

    Google Scholar 

  • Fernández, E., Schnell, R., Ranum, L.P.W., Hussey, S.C., Sil-flow, C.D. and Lefebvre, P.A. 1989. Isolation and characteriza-tion of the nitrate reductase structural gene in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 86: 6449–6453.

    Google Scholar 

  • Franco, A.R., Cárdenas, J. and Fernández, E. 1987. Involvement of reversible inactivation in the regulation of nitrate reductase enzyme levels in Chlamydomonas reinhardtii. Plant Physiol. 84: 665–669.

    Google Scholar 

  • Franco, A.R., Cárdenas, J. and Fernández, E. 1988. Regulation by ammonium of nitrate and nitrite assimilation in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 951: 98–103.

    Google Scholar 

  • Galván, A., Cárdenas, J. and Fernández, E. 1992. Nitrate reduc-tase regulates expression of nitrite uptake and nitrite reduc-tase activities in Chlamydomonas reinhardtii. Plant Physiol. 98: 422–426.

    Google Scholar 

  • Goldschmidt-Clermont, M. and Rahire, M. 1986. Sequence, evo-lution and differential expression of two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J. Mol. Biol. 191: 421–432.

    Google Scholar 

  • Gorman, D.S. and Levine, R.P. 1966. Cytochrome f and plasto-cyanin: their sequence in the photoelectric transport chain. Proc. Natl. Acad. Sci. USA 54: 1665–1669.

    Google Scholar 

  • Guerrero, M.G., Vega, J.M. and Losada, M. 1981. The assimila-tory nitrate-reducing system and its regulation. Annu. Rev. Plant Physiol. 32: 169–204.

    Google Scholar 

  • Hageman, R.H. and Reed, A.J. 1980. Nitrate reductase from higher plants. Meth. Enzymol. 69: 270–280.

    Google Scholar 

  • Harris, E.H. 1989. The Chlamydomonas Sourcebook. A Compre-hensive Guide to Biology and Laboratory Use, Academic Press, San Diego, CA.

  • Hipkin, C.R., Al-Bassam, B.A. and Syrett, P.J. 1980. The roles of nitrate and ammonium in the regulation of the development of nitrate reductase in Chlamydomonas reinhardtii. Planta 150: 13–18.

    Google Scholar 

  • Hoff, T., Truong, H.-N. and Caboche, M. 1994. The use of mu-tant and transgenic plants to study nitrate assimilation. Plant Cell Environ. 17: 489–506.

    Google Scholar 

  • Hutner, S.H., Provasoli, L., Schatz, A. and Haskins, C.P. 1950. Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc. Am. Phil. Soc. 94: 152–170.

    Google Scholar 

  • Kalakoutskii, K.L. and Fernández, E. 1995. Chlamydomonas rein-hardtii nitrate reductase complex has 105 kDa subunits in the wild-type strain and a structural mutant. Plant Sci. 105: 195–206.

    Google Scholar 

  • Kindle, K.L. 1987. aExpression of a gene for light-harvesting chloro-phyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetates. Plant Mol. Biol. 9: 547–563.

    Google Scholar 

  • Lien, T. and Schreiner, O. 1975. Purification of a de-repressible aryl-sulphatase from Chlamydomonas reinhardtii. Properties of the enzyme in intact cells and in a purified state. Biochim. Biophys. Acta 384: 168–179.

    Google Scholar 

  • Navarro, M.T., Prieto, R., Fernández, E. and Galván, A. 1996. Constitutive expression of nitrate reductase changes the regulation of nitrate and nitrite transporters in Chlamydomonas reinhardtii. Plant J. 9: 819–827.

    Google Scholar 

  • Newman, S.M., Boynton, J.E., Gillham, N.W., Randolph-Anderson, B.L., Johnson, A.M. and Harris, E.H. 1990. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126: 875–888.

    Google Scholar 

  • Notton, B.A. and Hewitt, E.J. 1971. The role of tungsten in the inhi-bition of nitrate reductase activity in spinach (Spinacea oleracea L.) leaves. Biochem. Biophys. Res. Comm. 44: 702–710.

    Google Scholar 

  • Ohresser, M., Matagne, R.F. and Loppes, R. 1997. Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr. Genet. 31: 264–271.

    Google Scholar 

  • Pouteau, S., Chérel, I., Vaucheret, H. and Caboche, M. 1989. Nitrate reductase mRNA regulation in Nicotiana plumbaginifolia nitrate reductase-deficient mutants. Plant Cell 1: 1111–1120.

    Google Scholar 

  • Prieto, R., Dubus, A., Galván, A. and Fernández, E. 1996. Isolation and characterization of two new regulatory mutants for nitrate as-similation in Chlamydomonas reinhardtii obtained by insertional mutagenesis. Mol. Gen. Genet. 251: 461–471.

    Google Scholar 

  • Quesada, A. and Fernández, E. 1994. Expression of nitrate assim-ilation related genes in Chlamydomonas reinhardtii. Plant Mol. Biol. 24: 185–194.

    Google Scholar 

  • Quesada, A., Galván, A., Schnell, R.A., Lefebvre, P.A. and Fernán-dez, E. 1993. Five nitrate assimilation-related loci are clustered in Chlamydomonas reinhardtii. Mol. Gen. Genet. 240: 387–394.

    Google Scholar 

  • Quesada, A., Gómez, I. and Fernández, E. 1998. Clustering of the nitrite reductase gene and a light-regulated gene with ni-trate assimilation loci in Chlamydomonas reinhardtii. Planta 206: 259–265.

    Google Scholar 

  • Schnell, R.A. and Lefebvre, P.A. 1993. Isolation of the Chlamy-domonas regulatory gene Nit2 by transposon tagging. Genetics 134: 737–747.

    Google Scholar 

  • Shiraishi, N., Sato, T., Ogura, N. and Nakagawa, H. 1992. Control by glutamine of the synthesis of nitrate reductase in cultured spinach cells. Plant Cell Physiol. 33: 727–731.

    Google Scholar 

  • Silflow, C.D. and Rosenbaum, J.L. 1981. Multiple α-and β-tubulin genes in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell 24: 81–88.

    Google Scholar 

  • Steinbeck, K.E., McIntosh, L., Arntzen, C.J. and Bogorad, L. 1981. Identification of the triazin receptor protein as a chloroplast gene product. Proc. Natl. Acad. Sci. USA 78: 7463–7467.

    Google Scholar 

  • Vaucheret, H., Marion-Poll, A., Meyer, C., Faure, J.D., Marin, E. and Caboche, M. 1992. Interest in and limits to the utilization of reporter genes for the analysis of transcriptional regulation of nitrate reductase. Mol. Gen. Genet. 235: 259–268.

    Google Scholar 

  • Vega, J.M., Herrera, J., Aparicio, P.J., Paneque, A. and Losada, M. 1971. Role of molybdenum in nitrate reduction by Chlorella. Plant Physiol. 48: 294–299.

    Google Scholar 

  • Vincentz, M., Moureaux, T., Leydecker, M.-T., Vaucheret, H. and Caboche, M. 1993. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 3: 1027–1035.

    Google Scholar 

  • Wray, J.L. and Filner, P. 1970. Structural and functional relation-ships of enzyme activities induced by nitrate in barley. Biochem. J. 119: 715–725.

    Google Scholar 

  • Zhang, D. and Lefebvre, P.A. 1997. FAR1, a new negative regulatory locus required for the repression of the nitrate reductase gene in Chlamydomonas reinhardtii. Genetics 146: 121–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loppes, R., Radoux, M., Ohresser, M.C. et al. Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter. Plant Mol Biol 41, 701–711 (1999). https://doi.org/10.1023/A:1006381527119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006381527119

Navigation