Skip to main content
Log in

Molecular cloning of a novel heat induced/chilling tolerance related cDNA1 in tomato fruit by use of mRNA differential display2

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chilling injury was circumvented by heat-treating mature green tomatoes (Lycopersicon esculentum, cv. Mountain Springs) at 42 °C for two days prior to storing them at 2 °C for one or two weeks, whereas fruits stored at 2 °C without preheating developed typical chilling injury symptoms and failed to ripen at 20 °C. Using mRNA differential display and screening of the cDNA libraries, we have cloned from tomato fruit a full-length HCT1 cDNA (heat induced/chilling tolerance related). The protein (17.6 kDa) predicted from coding region of HCT1 cDNA has high identity with class II cytosolic small HSPs. The gene corresponding to HCT1 cDNA was termed as LeHSP 17.6. Southern-blot hybridization indicates that LeHSP 17.6 belongs to a two-member gene family. Northern blot analysis indicates the heat-induced transcript of the LeHSP 17.6 remains up-regulated during subsequent exposure of the fruit to chilling temperatures for at least one week and upon transfer to ripening temperatures for one day. Fruits which were only chilled show a low level of expression of the LeHSP 17.6 transcript. We hypothesize that LeHSP 17.6 may be involved in protecting the cell from metabolic dysfunctions leading to ripening failure caused by chilling injury. This is the first report of a class II cytosolic smHSPs encoding gene in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. AliOsman F, Akande O: Amplification of the human glutathione stransferasepi cDNA from a λgt 11 cDNA library with the ExpandTM Long Template PCR system. Biochemica 4: 28 (1995).

    Google Scholar 

  2. Almoguera C, Coca MA, Jordano J: Tissuespecific expression of sunflower heat shock proteins in response to water stress. Plant J 4: 947–958 (1993).

    Article  Google Scholar 

  3. Angeletti E, Battiloro E, Pascale E, D'Ambrosio E: Southern and Northern blot fixing by microwave oven. Nucl Acids Res 23: 879–880 (1995).

    PubMed  Google Scholar 

  4. Bauer D, Muller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M: Identification ofdifferential expressed mRNA species by an improved display technique (DDRTPCR). Nucl Acids Res 21: 4272–4280 (1993).

    PubMed  Google Scholar 

  5. Cabane M, Calvet P, Vincens P, Boudet AM: Characterization of chillingacclimationrelated proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta 190: 346–353 (1993).

    PubMed  Google Scholar 

  6. Cohen GB, Ren R, Baltimore D: Modular binding domains in signal transduction proteins. Cell 80: 237–248 (1995).

    PubMed  Google Scholar 

  7. Collins GG, Nie X, Saltviet ME: Heat shock proteins and chilling sensitivity of mung bean hypocotyls. J Exp Bot 46: 795–802 (1995).

    Google Scholar 

  8. Dong JZ, Dunstan DI: Characterization of three heatshockprotein genes and their developmental regulation during somatic empryogenesis in white spruce. Planta 200: 85–91 (1996).

    Article  PubMed  Google Scholar 

  9. Doyle JJ, Doyle JL: Arapid DNAisolation procedure for small quantitites of fresh leaf tissues. Phytochem Bull 19: 11–15 (1987).

    Google Scholar 

  10. EckeyKaltenbach H, Kiefer E, Grosskopf E, Ernst D, Sandermann H: Differential transcript induction of parsley pathogenesis. Plant Mol Biol 33: 343–350 (1997).

    Article  PubMed  Google Scholar 

  11. Fray RG, Grierson D: Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and cosuppression. Plant Mol Biol 22: 589–602 (1993).

    PubMed  Google Scholar 

  12. GarciaBustos J, Heitman J, Hall MN: Nuclear protein localization. Biochem Biophys Acta 1071: 83–101 (1991).

    PubMed  Google Scholar 

  13. Goormachtig S, ValerioLepiniec M, Szczyglowski K, Van Montagu M, Holsters M, de Bruijn FJ: Use of differential display to identify novel Sesbania rostrata genes enhanced by Azorhizobium caulinodans infection. Mol PlantMicrobe Interact 8: 816–824 (1995).

    Google Scholar 

  14. Grierson D, Covey S: The properties and function of rapidlylabeled nuclear RNA. Planta 130: 317–321 (1976).

    Google Scholar 

  15. Hartl FU: Molecular chaperones in cellular protein folding. Nature 381: 571–580 (1996).

    Article  PubMed  Google Scholar 

  16. Helm KW, Lafayette PR, Nagao RT, Key JL, Vierling E: Localization of small heatshock proteins to the higher plant endomembrane system. Mol Cell Biol 13: 238–247 (1993).

    PubMed  Google Scholar 

  17. Hirose T: Effect of preand interposed warming on chilling injury, respiratory rate and membrane permeability of cucumber fruits during cold storage. J Jpn Soc Hort Sci 53: 459–466 (1985).

    Google Scholar 

  18. Hobson GE: Lowtemperature injury and the storage of ripening tomatoes. J Hort Sci 62: 55–62 (1987).

    Google Scholar 

  19. Jinn TL, Chen YM, Lin CY: Characterization and physiological function of class I lowmolecularmass, heat shock protein complex in soybean. Plant Physiol 108: 693–701 (1995).

    PubMed  Google Scholar 

  20. Johnson RR, Cranston HJ, Chaverra ME, Dyer WE: Characterization of cDNA clones for differentially expressed genes in embryos of dormant and nondormantAvena fatua L. caryopses. Plant Mol Biol 28: 113–122 (1995).

    PubMed  Google Scholar 

  21. Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucl Acid Res 15: 9627–9640 (1987).

    Google Scholar 

  22. Keleman Z, Dudits D, Gyorgyey J: New member of alfalfa small heat shock proteins is also expressed in somatic embryos. Accession number X98617 (unpublished).

  23. Key J, Lin CY, Chen TM: Heat shock proteins of higher plants. Proc Natl Acad Sci USA 76: 3526–3530 (1981).

    Google Scholar 

  24. Krishna P, Felsheim RF, Larkin JC, Das A: Structure and lightinduced expression of a small heatshock protein gene ofPharbitis nil. Plant Physiol 100: 1772–1779 (1992).

    Google Scholar 

  25. Krishna P, Sacco M, Cherutti JF, Hill S: Coldinduced accumulation of HSP90 transcripts in Brassica napus. Plant Physiol 107: 915–923 (1995).

    PubMed  Google Scholar 

  26. LaFayette PR, Nagao RT, O'Grady K, Vierling E, Key JL: Molecular characterization of cDNAs encoding lowmolecularweight heat shock proteins of soybean. Plant Mol Biol 30: 159–169 (1996).

    PubMed  Google Scholar 

  27. Lafuente MT, Belver A, Guye MG, Saltveit ME: Effect of temperature conditioning on chilling injury of cucumber cotyledons. Plant Physiol 95: 443–449 (1991).

    Google Scholar 

  28. Lauzon LM, Helm KW, Vierling E: A cDNAclone from Pisum sativum encoding a low molecular weight heat shock protein. Nucl Acids Res 18: 4274 (1990).

    PubMed  Google Scholar 

  29. Lee GJ, Pokala N, Vierling E: Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270: 10432–10438 (1995).

    Article  PubMed  Google Scholar 

  30. Lee JH, Hubel A, Schoffl F: Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8: 603–612 (1995).

    Article  PubMed  Google Scholar 

  31. Lee, YRL, Nagao RT, Key JL: A soybean 101kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermoterance. Plant Cell 6: 1889–1897 (1994).

    PubMed  Google Scholar 

  32. Lenne C, Douce R: A low molecular mass heatshock proteins is localized to higher plant mitochondria. Plant Physiol 105: 1255–1261 (1994).

    PubMed  Google Scholar 

  33. Li F, Barrnathan ES, Kariko K: Rapid method for screening and cloning cDNAs generated in differential mRNA display: application of Northern blot for affinity capturing of cDNAs. Nucl Acids Res 22: 1764–1765 (1994).

    PubMed  Google Scholar 

  34. Liang P, Averboukh L, Pardee AB: Distribution and cloning of eukaryotic mRNA by means of differential display: refinements and optimization. Nucleic Acids Res 21: 3269–3275 (1993).

    PubMed  Google Scholar 

  35. Liang P, Pardee AB: Differential display of eukaryotic mRNA by means of the polymerase chain reaction. Science 257: 967–971 (1992).

    PubMed  Google Scholar 

  36. Lurie S and Klein JD: Acquisition of lowtemperature tolerance in tomatoes by exposure to hightemperature stress. JAmer Soc Hort Sci 116: 1007–1012 (1991).

    Google Scholar 

  37. Lyons JM: Chilling injury in plants. Ann Rev Plant Physiol 24: 445–466 (1973).

    Google Scholar 

  38. McCollum TG, D'Aquino S, McDonald RE: Heat treatment inhibits mango chilling injury. HortScience 28: 197–198 (1993).

    Google Scholar 

  39. Moreland RB, Langevin GL, Singer RH, Garcea RL, Hereford LM: Amino acid sequences that determine the nuclear localization of yeast histone 2B. Mol Cell Biol 7: 4048–4057 (1987).

    PubMed  Google Scholar 

  40. Neumann D, Lichtenberger O, Gunther D, Tschiersch K, Nover L: Heat shock proteins induce heavymetal tolerance in higher plants. Planta 194: 360–367 (1994).

    Google Scholar 

  41. Neven LG, Haskell DW, Guy CL, Denslow N, Klein PA, Green LG, Silverman A: Association of 70kilodalton heat shock cognate proteins with acclimation to cold. Plant Physiol 99: 1362–1369 (1992).

    Google Scholar 

  42. Nover L: Heat shock response. CRC Press, Boca Raton (1991).

    Google Scholar 

  43. Nover L, Neumann D, Scharf KD: Heat Shock and Other Stress Response Systems of Plants. Springer Verlag, Berlin (1990).

    Google Scholar 

  44. Nover L, Scharf K: Synthesis, modifications and structural binding of heat shock granules in tomato cell cultures. Eur J Biochem 139: 303–313 (1984).

    PubMed  Google Scholar 

  45. Nover L, Scharf KD, Neumann D: Cytoplasmic heat shock granules are formed from precursor particles and are associated with a special set of mRNA. Mol Cell Biol 9: 1298–1308 (1989).

    PubMed  Google Scholar 

  46. Oh BJ, Balint DE, Giovannoni JJ: A modified procedure for PCRbased differential display and demonstration of use in plants for isolation of genes related to fruit ripening. Plant Mol Biol Rep 13: 70–81 (1995).

    Google Scholar 

  47. Osteryoung KW, Vierling E: Dynamics of small heat shock protein distribution within the chloroplasts of higher plants. J Biol Chem 269: 28676–28682 (1994).

    PubMed  Google Scholar 

  48. Pawson T: Protein module and signaling networks. Nature 373: 573–560 (1995).

    PubMed  Google Scholar 

  49. Raikhel N: Nuclear targeting in plants. Plant Physiol 100: 1627–1632 (1992).

    Google Scholar 

  50. Raschke E, Baumann G, Schoffl F: Nucleotide sequence analysis of soybean small heat shock protein genes belonging to two different multigene families. J Mol Biol 199: 549–557 (1988).

    PubMed  Google Scholar 

  51. Ren R, Mayer BJ, Cicchett P, Baltimore D: Identification of a tenamino acid prolinerich SH3 binding site. Science 259: 1157–1161 (1993).

    Google Scholar 

  52. Rickles RJ, Botfield MC, Zhou XM, Henry PA, Brugge JS, Zoller MJ: Phage display selection of ligand residues important for Src homology 3 domain binding specificity. Proc Natl Acad Sci USA 92: 10909–10913 (1995).

    PubMed  Google Scholar 

  53. Robbins J, Dilworth SM, Laskey RA, Dingwall C: Two independent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of biparticle nuclear targeting sequence. Cell 64: 615–623 (1991).

    Article  PubMed  Google Scholar 

  54. Sabehat A, Weiss D, Lurie S: The correlation between heatshock protein accumulation and persistence and chilling in tomato fruit. Plant Physiol 110: 531–537 (1996).

    PubMed  Google Scholar 

  55. Sambrook J, Fritsch EF, Maniatis TA: Molecular cloning: A laboratory manual. 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989).

    Google Scholar 

  56. Sanxter SS, Nishijima KA, Chan HT: Heattreating 'Sharwil' avocado for cold tolerance in quarantine cold treatments. HortScience 29: 1166–1168 (1994).

    Google Scholar 

  57. Schoffl F, Key JL: Identification of amultigene family for small heat shock proteins in soybean and physical characterization of one individual gene coding region. Plant Mol Biol 2: 269–278 (1983).

    Google Scholar 

  58. Sharma YK, Davis KR: Isolation of a novel Arabidopsis ozoneinduced cDNA by differential display. Plant Mol Biol 29: 91–98 (1995).

    PubMed  Google Scholar 

  59. Silver PA: How proteins enter the nucleus. Cell 64: 489–497 (1991).

    PubMed  Google Scholar 

  60. Susuki T, Krawitz D, Vierling E: A chloroplast small heat shock protein forms a large homooligomer and is not phosphorylated. In Molecular Chaperones and the Heat Shock Response Metting 5/15/ 5, 1996, pp. 288. Cold Spring Harbor Lab, Cold Spring Harbor, NY (1996).

    Google Scholar 

  61. Tieman DM, Handa AK: Molecular cloning and characterization of genes expressed during early tomato (Lycopersicon esculentum Mill) fruit development by mRNA differential display. J Amer Soc Hort Sci 121: 52–56 (1996).

    Google Scholar 

  62. Van Berkel J, Salamini F, Gebhardt C: Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stressresponsive genes. Plant Physiol 104: 445–452 (1994).

    PubMed  Google Scholar 

  63. Van der Knaap E, Kende H: Identification of a gibberellininduced gene in deepwater rice using differential display of mRNA. Plant Mol Biol 28: 589–592 (1995).

    PubMed  Google Scholar 

  64. Van der Krol AR, Chua NH: The basic domain of plant BZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell 3: 667–675 (1991).

    Article  PubMed  Google Scholar 

  65. Vierling E: The role of heat shock proteins in plants. Ann Rev Plant Physiol Mol Biol 42: 579–620 (1991).

    Google Scholar 

  66. Vierstra RD: Protein degradation in plants. Annu Rev Plant Physiol Mol Biol 44: 385–410 (1993).

    Google Scholar 

  67. Waters EL, Lee GJ, Vierling E: Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 296: 325–338 (1996).

    Google Scholar 

  68. Wilkinson JQ, Lanahan MB, Conner TW, Klee HJ: Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant Mol Biol 27: 1097–1108 (1995).

    PubMed  Google Scholar 

  69. Wollgiehn R, Neumann D, Nieden UZ, Musch A, Scharf KD, Nover L: Intracellular distribution of small heat stress proteins in culture cells of Lycopersicon peruvianum. J Plant Physiol 144: 491–499 (1994).

    Google Scholar 

  70. Woodgett JR, Hunter T, Gould KL: Protein kinase C and its role in cell growth. In Elson EL, Frazier WA, Graser L (eds). Cell Membranes: Methods and Reviews, 3, p. 215. Plenum, New York (1986).

    Google Scholar 

  71. Yeh CH, Yeh KW, Wu SH, Chang PFL, Chen YM, Lin CY: A recombinant rice 16.9 kDa heat shock protein can provide thermoprotection in vitro. Plant Cell Physiol 36: 1341–1348 (1995).

    PubMed  Google Scholar 

  72. Zetterqvist OZ, Ragnarsson U, Engstrom LT: Substrate specificity of cyclic AMPdependent protein kinase. In Kemp BE (ed). Peptides and Protein Phosphorylation, p. 43. CRC Press, Boca Raton (1990).

    Google Scholar 

  73. Zimmerman JW, Schultz RM: Analysis of gene expression in the preimplantation mouse embryo use of mRNA differential display. Proc Natl Acad Sci USA 91: 5456–5460 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadyrzhanova, D.K., Vlachonasios, K.E., Ververidis, P. et al. Molecular cloning of a novel heat induced/chilling tolerance related cDNA1 in tomato fruit by use of mRNA differential display2 . Plant Mol Biol 36, 885–895 (1998). https://doi.org/10.1023/A:1005954909011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005954909011

Navigation