Skip to main content
Log in

Isolation and characterization of two knotted-like homeobox genes from tomato

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Homeobox genes are known to play a role in developmental regulation. The knotted-like homeobox (knox) genes fall into two classes. The class I knox genes like kn1, stm1, and knat1 are involved in maintaining meristem identity in cells. The function of class II knox genes is at yet undetermined. We have characterized two knox genes from tomato. LeT6 and LeT12 map to distinct chromosome locations that are different from the location for a recently cloned knox gene from tomato, tkn1, confirming that plant homeobox genes are not clustered on chromosomes. These genes have a distinct expression pattern. Unlike other class I kn1-like genes, LeT6 is expressed in developing lateral organs and developing ovaries in flowers. LeT12 is more ubiquitously expressed in the mature plant. RNA in situ localization data suggest that both these genes may have a role to play in formative events in ovule and embryo morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernatzsky R, Tanksley SD: Toward a saturated linkage map of tomato based on isozymes and random cDNA sequences. Genetics 112: 887–898 (1986).

    Google Scholar 

  2. Bharathan G, Janssen B-J, Kellog EA, Sinha N: Phylogenetic relationships and evolution of the KNOTTED class of plant homeobox genes. Submitted.

  3. Boivin R, Hamel F, Beauseigle D, Bellemare G: Stage-specific transcription of the homeobox gene, Bnhd1, in young tissues and flowers of Brassica napus. Biochim Biophys Acta 1219: 201–204 (1994).

    PubMed  Google Scholar 

  4. Carroll SB: Homeotic genes and the evolution of arthropods and chordates. Nature 376: 479–485 (1995).

    PubMed  Google Scholar 

  5. Chen J, Dellaporta S: Urea-based plant DNA miniprep. In: Freeling M, Walbot V (eds) The Maize Handbook, pp. 526–538. Springer-Verlag, New York (1994).

    Google Scholar 

  6. Chen J-J, Janssen B-J, Williams A, Sinha N: A gene fusion at a homeobox locus: alteration in leaf shape and implications for morphological evolution. Plant Cell 9: 1289–1304 (1997).

    PubMed  Google Scholar 

  7. Chuck G, Lincoln C, Hake S: KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8: 1277–1289 (1996).

    PubMed  Google Scholar 

  8. Coen ES, Romero JM, Doyle S, Elliot R, Murphy G, Carpenter R: Floricula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322 (1990).

    Article  PubMed  Google Scholar 

  9. Gehring WJ: Homeo boxes in the study of development. Science 236: 1245–1252 (1987).

    PubMed  Google Scholar 

  10. Geourjon C, Deleage G: SOPM: a self optimised prediction method for protein secondary structure prediction. Protein Engin 7: 157–164 (1994).

    Google Scholar 

  11. Geourjon C, Deleage G: SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. CABIOS 11: 681–684 (1995).

    PubMed  Google Scholar 

  12. Hareven D, Gutfinger T, Parnis A, Esched Y, Lifschitz E: The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84: 735–744 (1996).

    PubMed  Google Scholar 

  13. Jorgensen RA, Cuellar RE, Thompson WF, Kavanagh TA: Structure and variation in ribosomal RNA genes of pea. Plant Mol Biol 8: 3–12 (1987).

    Google Scholar 

  14. Kappen C, Schugart K, Ruddle FH: Early evolutionary origin ofmajor homeodomain sequence classes. Genomics 18: 54–70 (1993).

    PubMed  Google Scholar 

  15. Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S: Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6: 1877–1887 (1994).

    PubMed  Google Scholar 

  16. King RD, Sternberg MJE: Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5: 2298–2310 (1996).

    PubMed  Google Scholar 

  17. Kissinger CR, Liu B, Martin-Blanco E, Kornberg TB, Pabo CO: Crystal structure of an engrailed homeodomain-DNA complex a 2.8 Å resolution: a framework for understanding homeodomain-DNA interactions. Cell 63: 579–590 (1990).

    Article  PubMed  Google Scholar 

  18. Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S: A Knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramtically alters leafmorphology when overexpressed in transgenic plants. Plant Cell 6: 1859–1876 (1994).

    PubMed  Google Scholar 

  19. Long JA, Moan EI, Medford JI, Barton MK: A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature 379: 66–69 (1996).

    PubMed  Google Scholar 

  20. Lu PZ, Porat R, Nadeau JA, O'Neill SD: Identification of ameristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8: 2155–2168 (1996).

    PubMed  Google Scholar 

  21. Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    PubMed  Google Scholar 

  22. Ma H, McMullen MD, Finer JJ: Identification of a homeoboxcontaining gene with enhanced expression during soybean (Glycine max L.) somatic embryo development. Plant Mol Biol 24: 465–473 (1994).

    Article  PubMed  Google Scholar 

  23. Matsuoka M, Ichikawa H, Saito A, Tada Y, Fujimura T, Kano-Murakami Y: Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell 5: 1039–1048 (1993).

    Article  PubMed  Google Scholar 

  24. McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ: A conserved DNA sequence in homeotic genes of the Drosophila antennapedia and bithorax complexes. Nature 308: 428–433 (1984).

    PubMed  Google Scholar 

  25. Mueller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W: The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374: 727–730 (1995).

    PubMed  Google Scholar 

  26. Narita JO, Gruissem W: Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell 1: 181–190 (1989).

    Article  PubMed  Google Scholar 

  27. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD: Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726 (1988).

    Article  PubMed  Google Scholar 

  28. Qian YQ, Billeter M, Otting G, Müller M, Gehring WJ, Wüthrich K: The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell 59: 573–580 (1989).

    PubMed  Google Scholar 

  29. Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Fischer RL: The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83: 735–742 (1995).

    PubMed  Google Scholar 

  30. Rost B: PHD: predicting one-dimensional protein structure by profile based neural networks. Meth Enzymol 266: 525–539 (1996).

    PubMed  Google Scholar 

  31. Rost B, Sander C: Prediction of protein structure at better than 70% accuracy. J Mol Biol 232: 584–599 (1993).

    Article  PubMed  Google Scholar 

  32. Rost B, Sander C: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19: 55–72 (1994).

    PubMed  Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  34. Scott MP, Weiner AJ: Structural relationship among genes that control development: Sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci USA 81: 4115–4119 (1984).

    PubMed  Google Scholar 

  35. Scott MP, Tamkun JW, and Hartzell III, GW: The structure and function of the homeodomain. Biochim Biophys Acta 989: 25–48 (1989).

    PubMed  Google Scholar 

  36. Serikawa KA, Martinez-Labrda A, Kim H-K, Zambryski PC: Localization of expression of KNAT3, a class 2 knotted1-like gene. Plant J 11: 853–861 (1997).

    PubMed  Google Scholar 

  37. Sinha N, Williams R, and Hake S: Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch fromdeterminate to indeterminate cell fates. Genes Devel 7: 787–795 (1993).

    PubMed  Google Scholar 

  38. Smith LG, Greene B, Veit B, Hake S: A dominant mutation in the maize homeobox gene, Kn1, causes its ectopic expression in leaf cells with altered fates. Development 116: 21–30 (1992).

    PubMed  Google Scholar 

  39. Strommer JN, Hake S, Bennetzen J, Taylor WC, Freeling M: Regulatory mutants of the maize Adh1 gene caused by DNA insertions. Nature 300: 542–544 (1982).

    Google Scholar 

  40. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broune P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Wing RA, Wu W, Young ND: High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160 (1992).

    PubMed  Google Scholar 

  41. Tanksley SD, Young ND, Paterson AH, Bonierbale MW: RFLP mapping in plant breeding: new tools for an old science. Bio/technology 7: 257–264 (1989).

    Article  Google Scholar 

  42. Volbrecht E, Veit B, Sinha N, Hake S: The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350: 241–243 (1991).

    PubMed  Google Scholar 

  43. Wu L, Ueda T, Messing J: The formation of mRNA 3′-ends in plants. Plant J 8: 323–329 (1995).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, BJ., Williams, A., Chen, JJ. et al. Isolation and characterization of two knotted-like homeobox genes from tomato. Plant Mol Biol 36, 417–425 (1998). https://doi.org/10.1023/A:1005925508579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005925508579

Keywords

Navigation