Skip to main content
Log in

On the long-wavelength spectral forms of chlorophyll a in Photosystem I: Spectroscopic and immunological investigations on a greening mutant of the green alga Scenedesmus obliquus

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The origin of the long-wavelength chlorophyll (Chl) absorption (λpeak > 680 nm) and fluorescence emission (λpeak > 685 nm) has been investigated on Scenedesmus mutants (C-2A′-series, lacking the ability to synthesize chlorophyll in the dark) grown at 0.3 (LL), 10 (ML) and 240 µE s−1 m−2(HL). LL cells are arrested in an early greening state; consequently, ‘Chl availability’ determines the phenotype. LL thylakoids are totally lacking long-wavelength Chl; nonetheless, PS I and PS II are fully functional. Gel electrophoresis and Western blots indicate that four out of seven resolved LHC polypeptides seem to require a high Chl availability for assembly of functional chlorophyll-protein complexes. The PS I core-complex of ML and HL thylakoids contains long-wavelength chlorophylls, but in the PS I core-complex of LL thylakoids these pigments are lacking. We conclude that long-wavelength pigments are only present in the PS I core in the case of high Chl availability. The following hypothesis is discussed: Chl availability determines not only the LHC polypeptide pattern, but also the number of bound Chl molecules per individual pigment-protein complex. Chl-binding at non-obligatory, peripheral sites of the pigment-protein complex results in long-wavelength Chl. In the case of low Chl availability, these sites are not occupied and, therefore, the long-wavelength Chl is absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JM, Waldron JC and Thorne SW (1978) Chlorophyll protein complexes of spinach and barley thylakoids. Spectral characterization of six complexes resolved by an improved electrophoretic procedure. FEBS Lett 92: 227-233.

    Google Scholar 

  • Bishop NI and Senger H (1972) The development of structure and function in chloroplasts of greening mutants of Scenedesmus. II. Development of the photosynthetic apparatus. Plant Cell Physiol 13: 937-953.

    Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J and Rögner M (1995) Supramolecular structure of the Photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92: 175-179.

    Google Scholar 

  • Bose S (1982) Chlorophyll fluorescence in green plants and energy transfer pathways in photosynthesis. Photochem Photobiol 36: 725-731.

    Google Scholar 

  • Brinkmann G and Senger H (1978) Light-dependent formation of thylakoid membranes during the development of the photosynthetic apparatus in pigmentmutant C-2A′ of Scenedesmus obliquus. In: Akoyunoglou G et al. (eds) Chloroplast Development, pp 201-206. Elsevier/North Holland Biomedical Press, Amsterdam, the Netherlands.

    Google Scholar 

  • Butler WL and Norris KH (1963) Lifetime of the long-wavelength chlorophyll fluorescence. Biochim Biophys Acta 66: 72-77.

    Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60: 1-23.

    Google Scholar 

  • Dau H and Sauer K (1991) Electric field effect on chlorophyll fluorescence and its relation to Photosystem II charge separation reactions studied by a salt-jump technique. Biochim Biophys Acta 1098: 49-60.

    Google Scholar 

  • Dau H and Sauer K (1996) Exciton equilibration and Photosystem II exciton dynamics - a fluorescence study on Photosystem II membrane particles of spinach. Biochim Biophys Acta 1273: 175-190.

    Google Scholar 

  • Dreyfuss BW and Thornber JP (1994a) Assembly of the lightharvesting complexes (LHCs) of Photosystem II. Monomeric LHC IIb complexes are intermediates in the formation of oligomeric LHC IIb complexes. Plant Physiol 106: 829-839.

    Google Scholar 

  • Dreyfuss BW and Thornber JP (1994b) Organization of the lightharvesting complex of Photosystem I and II and its assembly during plastid development. Plant Physiol 106: 841-848.

    Google Scholar 

  • Dubertret G and Joliot P (1974) Structure and organization of system II photosynthetic units during the greening of a dark-grown Chlorella mutant. Biochim Biophys Acta 357: 399-411.

    Google Scholar 

  • Falbel TG and Staehelin LA(1996) Partial blocks in the early steps of the chlorophyll synthesis pathway: A common feature of chlorophyll b-deficient mutants. Physiol Plant 97: 311-320.

    Google Scholar 

  • Franck F (1993) Photosynthetic activities during early assembly of thylakoid membranes. In: Sundqvist C and Ryberg M (eds) Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 365-381. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Gobets B, van Amerongen H, Monshouwer R, Kruip J, Rögner M, van Grondelle R and Dekker JP (1994) Polarized site-selected fluorescence spectroscopy of isolated Photosystem I particles.Biochim Biophys Acta 1188: 75-85.

    Google Scholar 

  • Green BR (1988) The chlorophyll-protein complexes of higher plant photosynthetic membranes or Just what green band is that? Photosynth Res 15: 3-32.

    Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685-714.

    Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1-65.

    Google Scholar 

  • Hermsmeier D, Schulz R and Senger H (1994a) Formation of lightharvesting complexes of Photosystem II in Scenedesmus. I. Correlation between amounts of photosynthetic pigments, Lhc messenger RNAs and LHC apoproteins during constitutional darkand light-dependent Lhc-gene expression. Planta 193: 398-405.

    Google Scholar 

  • Hermsmeier D, Schulz R and Senger H (1994b) Formation of lightharvesting complexes of Photosystem II in Scenedesmus. II. Different patterns of light-regulation of Lhc-gene expression in green and greening cells. Planta 193: 406-412.

    Google Scholar 

  • Holzwarth AR, Griebenow K and Schaffner K (1990) A photosynthetic antenna system which contains a protein-free chromophore aggregate. Z Naturforsch 45c: 203-206.

    Google Scholar 

  • Hoober JK, Maloney MA, Asbury LR and Marks DB (1990) Accumulation of chlorophyll a/b-binding polypeptides in Chlamydomonas reinhardtii y-1 in the light or dark at 38 °C. Evidence for proteolytic control. Plant Physiol 92: 419-426.

    Google Scholar 

  • Humbeck K, Akoyunoglou G and Senger H (1984) The effect of intermittent light on chloroplast development in a greening pigment mutant of the green alga Scenedesmus obliquus. Isr J Bot 33: 163-173.

    Google Scholar 

  • Ikegami I, Itoh S and Iwaki M (1995) Photoactive Photosystem I particles with a molar ratio of chlorophyll a to P700 of 9. Plant Cell Physiol 36: 857-864.

    Google Scholar 

  • Ish-Shalom D and Ohad I (1983) Organization of chlorophyllprotein complexes of Photosystem I in Chlamydomonas reinhardii. Biochim Biophys Acta 722: 498-507.

    Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1-19.

    Google Scholar 

  • Jennings RC, Bassi R, Garlaschi FM, Dainese P and Zucchelli G (1993) Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of Photosystem II antenna. Biochemistry 32: 3203-3210.

    Google Scholar 

  • Jia Y, Jean JM, Werst MM, Chan C-H and Fleming GR (1992) Simulation of the temperature dependence of energy transfer in the PS I core antenna. Biophys J 63: 259-273.

    Google Scholar 

  • Katz JJ, Bowman MK, Michalski TJ and Worcester DL (1991) Chlorophyll aggregation: Chlorophyll/water micelles as models for in vivo long-wavelength chlorophyll. In: Scheer H (ed) Chlorophylls, pp 211-235. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Koenig F and Schmidt M (1995) Gloeobacter violaceus - investigation of an unusual photosynthetic apparatus. Absence of the long wavelength emission of Photosystem I in 77 K fluorescence spectra. Physiol Plant 94: 621-628.

    Google Scholar 

  • Kramer HJM, Westerhuis WHJ and Amesz J (1985) Low temperature spectroscopy of intact algae. Physiol Veg 23: 535-543.

    Google Scholar 

  • Laible PD, Zipfel W and Owens TG (1994) Excited state dynamics in chlorophyll-based antennae: The role of transfer equilibrium. Biophys J 66: 844-860.

    Google Scholar 

  • Marquardt J and Bassi R (1993) Chlorophyll-proteins from maize seedlings grown under intermittent light conditions. Planta 191: 265-273.

    Google Scholar 

  • Marquardt J and Rehm AM (1995) Porphyridium purpureum (Rhodophyta) from red and green light: Characterization of Photosystem I and determination of in situ-fluorescence spectra of the photosystems. J Photochem Photobiol B: Biol 30: 49-56.

    Google Scholar 

  • Mukerji I and Sauer K (1993) Energy-transfer dynamics of an isolated light-harvesting complex of Photosystem I from spinach - time-resolved fluorescence measurements at 295 K and 77 K. Biochim Biophys Acta 1142: 311-320.

    Google Scholar 

  • Mullet JE, Burke JJ and Arntzen CJ (1980) A developmental study of Photosystem I peripheral chlorophyll proteins. Plant Physiol 65: 823-827.

    Google Scholar 

  • Nechushtai R, Nourizadeh SD and Thornber JP (1986) A reevaluation of the fluorescence of the core chlorophylls of Photosystem I. Biochim Biophys Acta 848: 193-200.

    Google Scholar 

  • Pålsson L-O, Dekker JP, Schlodder E, Monshouwer, R and van Grondelle R (1996) Polarized site-selective fluorescence spectroscopy of the long-wavelength emitting chlorophylls in isolated Photosystem I particles of Synechococcus elongatus. Photosynth Res 48: 239-246.

    Google Scholar 

  • Paulsen H(1995) Chlorophyll a/b-binding proteins. PhotochemPhotobiol 62: 367-382.

    Google Scholar 

  • Porra RJ (1991) Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic, and marine organisms, including recalcitrant algae. In: Scheer H (ed) Chlorophylls, pp 31-57. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Preiss S and Thornber JP (1995) Stability of the apoproteins of lightharvesting complex I and II during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorina f2. Plant Physiol 107: 709-717.

    Google Scholar 

  • Rabinowitch EI (1951) Photosynthesis and Related Processes, Part I. Interscience Publishers, New York, USA.

    Google Scholar 

  • Römer S, Humbeck K and Senger H (1990) Relationship between biosynthesis of carotenoids and increasing complexity of Photosystem I in mutant C-6D of Scenedesmus obliquus. Planta 182: 216-222.

    Google Scholar 

  • Scherz A, Rosenbach-Belkin V and Fisher JRE (1991) Chlorophyll aggregates in aqueous solutions. In Scheer H (ed) Chlorophylls, pp 237-268. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Schmid VHR, Cammarata KV, Bruns BU and Schmidt GW(1997) In vitro reconstitution of the Photosystem I light-harvesting complex LHCI-730: Heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci USA 94: 7667-7672.

    Google Scholar 

  • Schulz R and Senger H (1993) Protochlorophyllide reductase: A key enzyme in the greening process. In: Sundqvist C and Ryberg M (eds) Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 180-218. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Senger H and Bishop NI (1972) The development of structure and function in chloroplasts of greening mutants of Scenedesmus. I. Formation of chlorophyll. Plant Cell Physiol 13: 633-649.

    Google Scholar 

  • Senger H and Mell V (1977) Preparation of photosynthetically active particles from synchronized cultures of unicellular algae. Meth Cell Biol 15: 201-219.

    Google Scholar 

  • Senger H and Straßberger G (1978) Development of the photosystems in greening algae. In: Akoyunoglou G et al. (eds) Chloroplast Development, pp 367-378. Elsevier/North Holland Biomedical Press, Amsterdam, the Netherlands.

    Google Scholar 

  • Shimada Y, Tanaka A, Tanaka Y, Takabe T, Takabe T and Tsuji H (1990) Formation of chlorophyll-protein complexes during greening. 1. Distribution of newly synthesized chlorophyll among apoproteins. Plant Cell Physiol 31: 639-647.

    Google Scholar 

  • Simpson DJ and von Wettstein D (1989) The structure and function of the thylakoid membrane. Carlsberg Res Commun 54: 55-65.

    Google Scholar 

  • Strotmann H and von Gösseln C (1972) Photosystem I-abh ängige Phosphorylierungen isolierter Chloroplasten mit Ascorbat/2.6-Dichlorphenolindophenol als Elektronendonatoren und Methylviologen als Elektronenakzeptor. Z Naturforsch 27b: 445-455.

    Google Scholar 

  • Sukenik A, Bennett J and Falkowski P (1988) Changes in the abundance of individual apoproteins of light-harvesting chlorophyll a/b-protein complexes of Photosystem I and II with growth irradiance in the marine chlorophyte Dunaliella tertiolecta. Biochim Biophys Acta 932: 206-215.

    Google Scholar 

  • Tanaka A, Yamamoto Y and Tsuji H (1991) Formation of Chlorophyll-protein complexes during greening. 2. Redistribution of Chlorophyll among apoproteins. Plant Cell Physiol 32: 195-204.

    Google Scholar 

  • Thielmann J and Galland P (1991) Action spectra for photosynthetic adaptation in Scenedesmus obliquus. II. Chlorophyll biosynthesis and cell growth under heterotrophic conditions. Planta 183: 340-346.

    Google Scholar 

  • Thorne SW and Boardman NK (1971) Formation of Chlorophyll b, and the fluorescence properties and photochemical activities of isolated plastids from greening pea seedlings. Plant Physiol 47: 252-261.

    Google Scholar 

  • Trissl H-W (1993) Long-wavelenght absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35: 247-263.

    Google Scholar 

  • Valkunas L, Liuolia V, Dekker JP and van Grondelle R (1995) Description of energy migration and trapping in Photosystem I by a model with two distance scaling parameters. Photosynth Res 43: 149-154.

    Google Scholar 

  • White RA and Hoober JK (1994) Biogenesis of thylakoid membranes in Chlamydomonas reinhardtii y1. A kinetic study of initial greening. Plant Physiol 106: 583-590.

    Google Scholar 

  • Zuber H and Brunisholz RA(1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability. In: Scheer H (ed) Chlorophylls, pp 627-703. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Zucchelli G, Jennings RC and Garlaschi FM (1990) The presence of long-wavelenght chlorophyll a spectral forms in the lightharvesting chlorophyll a/b protein complex II. J Photochem Photobiol B: Biol 6: 381-394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, H., Hühn, M. & Dau, H. On the long-wavelength spectral forms of chlorophyll a in Photosystem I: Spectroscopic and immunological investigations on a greening mutant of the green alga Scenedesmus obliquus. Photosynthesis Research 55, 95–107 (1998). https://doi.org/10.1023/A:1005915806571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005915806571

Navigation