Skip to main content
Log in

Characterization of 26S proteasome α- and β-type and ATPase subunits from spinach and their expression during early stages of seedling development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Three kinds of cDNAs encoding 26S proteasome subunits have been cloned from spinach (Spinacia oleracea L.). These genes, designated as SOPSC8, SOPSC1 and SOPRS7, encode an α-type and a β-type subunit of the 20S catalytic core, and an ATPase subunit of the 19/22S regulatory complex, respectively. The deduced protein sequences showed high sequence similarities to other proteasome α- and β-type and ATPase subunit proteins. Southern blot analysis indicates that there are additional members of these dispersed proteasome families in the spinach genome. These three subunit genes are expressed simultaneously during germination and reach a maximum one day after sowing followed by a decline. The expression of these genes also increases during cotyledon senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agusutini V, McIntosh T, Malek L: Ubiquitination and ATP levels in garden pea seeds. Physiol Plant 97: 463–468 (1996).

    Google Scholar 

  2. Aki M, Tamura T, Tokunaga F, Iwanaga S, Kawamura Y, Shimbara N, Kagawa S, Tanaka K, Ichihara A: cDNA cloning of rat proteasome subunit RC1, a homologue of RING10 located in the human MHCclass II region. FEBS Lett 301: 65–68 (1992).

    Google Scholar 

  3. Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka H, Nothwang HG, Noda C, Tanaka K, Ichihara A: cDNA cloning and interferon γ down-regulation of proteasomal subunits X and Y. Science 265: 1231–1234 (1994).

    Google Scholar 

  4. Armon T, Ganoth D, Hershko A: Assembly of the 26S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J Biol Chem 265: 20 723–20 726 (1990).

    Google Scholar 

  5. Belknap WR, Garbarino JE: The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci 1: 331–335 (1996).

    Google Scholar 

  6. Ciechanover A: The ubiquitin-proteasome proteolytic pathway. Cell 79: 13–21 (1994).

    Google Scholar 

  7. Coux O, Nothwang HG, Silva Pereira I, Recillas Targa F, Bey F, Scherrer K: Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Mol Gen Genet 245: 769–780 (1994).

    Google Scholar 

  8. Coux O, Tanaka K, Goldberg AL: Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65: 801–847 (1996).

    Google Scholar 

  9. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M: A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269: 7059–7061 (1994).

    Google Scholar 

  10. Dubiel W, Ferrell K, Rechsteiner M: Subunits of the regulatory complex of the 26S protease. Mol Biol Rep 21: 27–34 (1995).

    Google Scholar 

  11. Ellis RE, Yuan J, Horvitz HR: Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698 (1991).

    Google Scholar 

  12. Frentzel S, Gräf U, Hämmerling GJ, Kloetzel P-M: Isolation and characterization of the MHC linked α-type proteasome subunit MC13 cDNA. FEBS Lett 302: 121–125 (1992).

    Google Scholar 

  13. Fridlender M, Lev-Yadun S, Baburek I, Angelis K, Levy AA: Cell divisions in cotyledons after germination: localization time course and utilization for a mutagenesis assay. Planta 199: 307–313 (1996).

    Google Scholar 

  14. Fujii G, Tashiro K, Emori Y, Saigo K, Shiokawa K: Molecular cloning of cDNAs for two Xenopus proteasome subunits and their expression in adult tissues. Biochim Biophys Acta 1216: 65–72 (1993).

    Google Scholar 

  15. Fujinami K, Tanahashi N, Tanaka K, Ichihara A, Cejka Z, Baumeister W, Miyawaki M, Sato T, Nakagawa H: Purification and characterization of the 26S proteasome from spinach leaves. J Biol Chem 269: 25 905–25 910 (1994).

    Google Scholar 

  16. Fujiwara T, Tanaka K, Orino E, Yoshimura T, Kumatori A, Tamura T, Chung CH, Nakai T, Yamaguchi K, Shin S, Kakizuka A, Nakanishi S, Ichihara A: Proteasomes are essential for yeast proliferation: cDNA cloning and gene disruption of two major subunits. J Biol Chem 265: 16 604–16 613 (1990).

    Google Scholar 

  17. Genschik P, Jamet E, Philipps G, Parmentier Y, Gigot C, Fleck J: Molecular characterization of a β-type proteasome subunit from Arabidopsis thaliana co-expressed at a high level with an α-type proteasome subunit early in the cell cycle. Plant J 6: 537–546 (1994).

    Google Scholar 

  18. Genschik P, Philipps G, Gigot C, Fleck J: Cloning and sequence analysis of a cDNA clone from Arabidopsis thaliana homologous to a proteasome β subunit from Drosophila. FEBS Lett 309: 311–315 (1992).

    Google Scholar 

  19. Ghislain M, Udvardy A, Mann C: S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366: 358–362 (1993).

    Google Scholar 

  20. Gordon C, McGurk G, Dillon P, Rosen C, Hastie ND: Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit. Nature 366: 355-357 (1993).

    Google Scholar 

  21. Hershko A, Ciechanover A: The ubiquitin system for protein degradation. Annu Rev Biochem 61: 761–807 (1992).

    Google Scholar 

  22. Hilt W, Wolf DH: Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol Biol Rep 21: 3–10 (1995).

    Google Scholar 

  23. Hilt W, Wolf DH: Proteasomes: destruction as a programme. Trends Biochem Sci 21: 96–102 (1996).

    Google Scholar 

  24. Jabben M, Shanklin J, Vierstra RD: Ubiquitin-phytochrome conjugates: pool dynamics during in vivo phytochrome degradation. J Biol Chem 264: 4998–5005 (1989).

    Google Scholar 

  25. Kanayama H, Tamura T, Ugai S, Kagawa S, Tanahashi N, Yoshimura T, Tanaka K, Ichihara A: Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms. Eur J Biochem 206: 567–578 (1992).

    Google Scholar 

  26. Kunau WH, Beyer A, Franken T, Götte K, Marzioch M, Saidowsky J, Skaletz-Rorowski A, Wiebel FF: Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie 75: 209–224 (1993).

    Google Scholar 

  27. Liu Y-G, Mitsukawa N, Oosumi T, Whittier RF: Efficient isolation and mapping of Arabidopsis thaliana T-DNAinsert junctions by thermal asymmetric interlaced PCR. Plant J 8: 457–463 (1995).

    Google Scholar 

  28. Lupas A, Koster AJ, Baumeister W: Structural features of 26S and 20S proteasomes. Enzymol Prot 47: 252–273 (1993).

    Google Scholar 

  29. Nelbock P, Dillon PJ, Perkins A, Rosen CA: A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 248: 1650–1653 (1990).

    Google Scholar 

  30. Ozaki M, Fujinami K, Tanaka K, Amemiya Y, Sato T, Ogura N, Nakagawa H: Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem 267: 21 678–21 684 (1992).

    Google Scholar 

  31. Peters J-M, Frank WW, Kleinschmidt JA, Baumeister W: Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269: 7709–7718 (1994).

    Google Scholar 

  32. Prombona A, Tabler M, Providaki M, Tsagris M: Structure and expression of LeMA-1, a tomato protein belonging to the SEC18-PAS1-CDC48-TBP-1 protein family of putative Mg2+-dependent ATPases. Plant Mol Biol 27: 1109–1118 (1995).

    Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  34. Schliephacke M, Kremp A, Schmid H-P, Kohler K, Kull U: Prosomes (proteasomes) of higher plants. Eur J Cell Biol 55: 114–121 (1991).

    Google Scholar 

  35. Schnall R, Mannhaupt G, Stucka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I, Feldmann H: Identification of a set of yeast genes coding for a novel family of putative ATPases with high similarity to constituents of the 26S protease complex. Yeast 10: 1141–1155 (1994).

    Google Scholar 

  36. Shibuya H, Irie K, Ninomiya-Tsuji J, Goebl M, Taniguchi T, Matsumoto K: Newhuman gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature 357: 700–702 (1992).

    Google Scholar 

  37. Shiraishi N, Kubo Y, Takeba G, Kiyota S, Sakano K, Nakagawa H: Sequence analysis of cloned cDNA and proteolytic fragments for nitrate reductase from Spinacia oleracea L. Plant Cell Physiol 32: 1031–1038 (1991).

    Google Scholar 

  38. Shirley BW, Goodman HM: An Arabidopsis gene homologous to mammalian and insect genes encoding the largest proteasome subunit. Mol Gen Genet 241: 586–594 (1993).

    Google Scholar 

  39. Shirley BW, Hanley S, Goodman HM: Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4: 333–347 (1992).

    Google Scholar 

  40. Skoda B, Malek L: Dry pea seed proteasome: purification and enzymic activities. Plant Physiol 99: 1515–1519 (1992).

    Google Scholar 

  41. Suzuka I, Koga-Ban Y, Sasaki T, Minobe Y, Hashimoto J: Identification of cDNA clones for rice homologs of the human immunodeficiency virus-1 Tat binding protein and subunit 4 of human 26S protease (proteasome). Plant Sci 103: 33–40 (1994).

    Google Scholar 

  42. Swaffield JC, Bromberg JF, Johnston SA: Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 357: 698–700 (1992).

    Google Scholar 

  43. Tamura T, Lee DH, Osaka F, Fujiwara T, Shin S, Chung CH, Tanaka K, Ichihara A: Molecular cloning and sequence analysis of cDNAs for five major subunits of human proteasomes (multi-catalytic proteinase complexes). Biochim Biophys Acta 1089: 95–102 (1991).

    Google Scholar 

  44. Tanahashi N, Tsurumi C, Tamura T, Tanaka K: Molecular structures of 20S and 26S proteasomes. Enzym Prot 47: 241–251 (1993).

    Google Scholar 

  45. Tanaka K: Molecular biology of proteasomes. Mol Biol Rep 21: 21–26 (1995).

    Google Scholar 

  46. Tanaka K, Kanayama H, Tamura T, Lee DH, Kumatori A, Fujiwara T, Ichihara A, Tokunaga F, Aruga R, Iwanaga S: cDNA cloning and sequencing of component C8 of proteasomes from rat hepatoma cells. Biochem Biophys Res Commun 171: 676–683 (1990).

    Google Scholar 

  47. van Nocker S, Deveraux Q, Rechsteiner M, Vierstra RD: ArabidopsisMBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci USA 93: 856–860 (1996).

    Google Scholar 

  48. Veierskov B, Ferguson IB: Ubiquitin conjugating activity in leaves and isolated chloroplasts from Avena sativa L. during senescence. J Plant Physiol 138: 608–613 (1991).

    Google Scholar 

  49. Vierstra RD: Protein degradation in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 385–410 (1993).

    Google Scholar 

  50. Walker JE, Saraste M, Runswick MJ, Gay NJ: Distantly related sequences in the β-and α-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945–951 (1982).

    Google Scholar 

  51. Watanabe A, Price CA: Translation of mRNA's for subunits of chloroplast coupling factor 1 in spinach. Pro Natl Acad Sci USA 79: 6304–6308 (1982).

    Google Scholar 

  52. Wilson KA: review of protein mobilization in dicot seeds. In: Dalling MJ (ed) Plant Proteolytic Enzymes, vol 2, pp. 19–47. CRC Press, Boca Raton, FL (1986).

    Google Scholar 

  53. Zwickl P, Grziwa A, PÜhler G, Dahlmann B, Lottspeich F, Baumeister W: Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31: 964–972 (1992).

    Google Scholar 

  54. Zwickl P, Kleinz J, Baumeister W: Critical elements in proteasome assembly. Nature Struct Biol 1: 765–770 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, N., Tomizawa, Ki., Tanaka, K. et al. Characterization of 26S proteasome α- and β-type and ATPase subunits from spinach and their expression during early stages of seedling development. Plant Mol Biol 34, 307–316 (1997). https://doi.org/10.1023/A:1005839501822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005839501822

Navigation