Skip to main content
Log in

Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Rho family of GTPases are in higher eukaryotes divided into 3 major subfamilies; the Rho, Rac and Cdc42 proteins. In plants, however, the Rho family is restricted to one large family of Rac-like proteins. From work with mammalian phagocytes the Rac proteins are known to activate a multicomponent NADPH-dependent oxidase which results in accumulation of H2O2, a process termed oxidative burst. In plants a similar oxidative burst is observed and plays an important role in its defence against pathogen infections, suggesting a similar role for the plant Rac-like proteins. The Rho family of GTPases proteins are also involved in control of cell morphology, and are also thought to mediate signals from cell membrane receptors.

In a broad search for members of the Ras superfamily in plants, several new small GTP-binding proteins were found. We report here the identification and molecular cloning of 5 rac-like cDNAs from Arabidopsis thaliana, Arac1–5. The Rac-like proteins deduced from the cDNA sequences all share 80–95% homology, but show considerably more diversity on the nucleotide level, indicating that this is an ancient gene family. Four of the rac genes were found to be expressed in all tissues examined, but one gene, Arac2, was expressed exclusively in the root, hypocotyl and stem. Our results show that the rac gene family in A. thaliana consists of at least 10 different genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW: Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353: 668-670 (1991).

    PubMed  Google Scholar 

  2. Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117-127 (1991).

    PubMed  Google Scholar 

  3. Bradley DJ, Kjellbom P, Lamb CJ: Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defence response. Cell 70: 21-30 (1992).

    PubMed  Google Scholar 

  4. Bush J, Franek K, Cardelli J: Cloning and characterization of seven novel Dictyostelium discoideum rac-related genes belonging to the rho family of GTPases. Gene 136: 61-68 (1993).

    PubMed  Google Scholar 

  5. Chant J, Stowers L: GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81: 1-4 (1995).

    PubMed  Google Scholar 

  6. Chung CT, Niemela SL, Miller RH: One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86: 2172-2175 (1989).

    PubMed  Google Scholar 

  7. Clark CG, Roger AJ: Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92: 6518-6521 (1995).

    PubMed  Google Scholar 

  8. Coso OA, Chiariello M, Yu J, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS: The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81: 1137-1146 (1995).

    PubMed  Google Scholar 

  9. Dayhoff MO: Atlas of Protein Sequence and Structure, Vol 5, Suppl 3: 348. National Biomedical Research Foundation, Washington, DC (1979).

    Google Scholar 

  10. Delmer DP, Pear JR, Andrawis A, Stalker DM: Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Mol Gen Genet 248: 43-51 (1995).

    PubMed  Google Scholar 

  11. Doolittle RF, Feng DF, Tsang S, Cho G, Little E: Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470-477 (1996).

    PubMed  Google Scholar 

  12. Downward J: The ras superfamily of small GTP-binding proteins. Trends Biochem Sci 15: 469-472 (1990).

    PubMed  Google Scholar 

  13. Felsenstein J: Distance methods for inferring phylogenies: a justification. Evolution 38: 16-24 (1984).

    Google Scholar 

  14. Fitch WM, Margoliash E: Construction of phylogenetic trees. Science 155: 279-284 (1967).

    PubMed  Google Scholar 

  15. Finegold AA, Johnson DLI, Farnsworth CC, Gelb MH, Kudd SR, Glomset JA, Tamanoi F: Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product but not the DPR1 gene product. Proc Natl Acad Sci USA 88: 4448-4452 (1991).

    PubMed  Google Scholar 

  16. Freeman JL, Abo A, Lambeth JD: Rac ‘insert region’ is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J Biol Chem 271: 19794-19801 (1996).

    PubMed  Google Scholar 

  17. Hancock JF, Paterson H, Marshall CJ: A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63: 133-139 (1990).

    PubMed  Google Scholar 

  18. Henikoff S: Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351-359 (1984).

    PubMed  Google Scholar 

  19. Kakimoto T, Shibaoka H: Synthesis of polysaccharides in phragmoplasts isolated from tobacco BY-2 cells. Plant Cell Physiol 33: 353-361 (1992).

    Google Scholar 

  20. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427-441 (1993).

    PubMed  Google Scholar 

  21. Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM.: Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac2. Science 254: 1512-1515 (1991).

    PubMed  Google Scholar 

  22. Levine A, Tenhaken R, Dixon R, Lamb C: H2O2 from the oxidative burst orchestrate the plant hypersensitive disease resistance response. Cell 79: 583-593 (1994).

    PubMed  Google Scholar 

  23. Lin Y, Wang Y, Zhu J, Yang Z: Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell 8: 293-303 (1996).

    PubMed  Google Scholar 

  24. Lohia A, Samuelson J: Molecular cloning of a rho family gene of Entamoeba histolytica. Mol Biochem Parasitol 58: 177-180 (1993).

    PubMed  Google Scholar 

  25. Manser E, Leung T, Salihuddin H, Zhao Z, Lim L: A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40-46 (1994).

    PubMed  Google Scholar 

  26. Milburn MV, Tong L, de Vos AM, Brünger A, Yamaizumi Z, Nishimura S, Kim SH: Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247: 939-945 (1990).

    PubMed  Google Scholar 

  27. Minden A, Lin A, Claret F, Abo A, Karin M: Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42. Cell 81: 1147-1155 (1995).

    PubMed  Google Scholar 

  28. Moodie SA, Paris M, Villafranca E, Kirshmeier P, Willumsen BM, Wolfman A: Different structural requirements within the switch II region of the Ras protein for interactions with specific downstream targets. Oncogene 11: 447-454 (1995).

    PubMed  Google Scholar 

  29. Murray V: Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucl Acids Res 17: 8889 (1989).

    PubMed  Google Scholar 

  30. Nobes CD and Hall A: Rho Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81: 53-62 (1995).

    PubMed  Google Scholar 

  31. Qadota H, Python CP, Inoue SB, Arisawa MM, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y: Identification of Yeast RhoP1 GTPase as a regulatory subunit of 1,3-β-glucan synthase. Science 272: 279-281 (1996).

    PubMed  Google Scholar 

  32. Qiu RG, Chen J, Kirn D, McCormick F, Symons M: An essential role for Rac in Ras transformation. Nature 374: 457-459 (1995).

    PubMed  Google Scholar 

  33. Ridley AJ and Hall A: The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-399 (1992).

    PubMed  Google Scholar 

  34. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein rac regulates growth factorinduced membrane ruffling. Cell 70: 401-410 (1992).

    PubMed  Google Scholar 

  35. Rost B: PDH: Predicting one-dimensional protein structure by profile based neural networks. Meth Enzymol 266: 525-539 (1996).

    PubMed  Google Scholar 

  36. _ Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA: Primer-directed enzymatic amplification ofDNAwith a thermostable DNA polymerase. Science 239: 487-491 (1988).

    PubMed  Google Scholar 

  37. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425 (1987).

    PubMed  Google Scholar 

  38. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  39. Sanger F, Nicklen S, Coulsen AR: DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74: 5463-5467 (1977).

    PubMed  Google Scholar 

  40. Schuler GD, Altschul SF, Lipman DJ: A workbench for multiple alignment construction and analysis. Prot Struct Funct Genet 9: 180-190 (1991).

    Google Scholar 

  41. Schweins T, Wittinghofer A: GTP-binding proteins: structures, interactions and relationships. Curr Biol 4: 547-550 (1994).

    PubMed  Google Scholar 

  42. Shen PS, Lohia A, Samuelson J: Molecular cloning of ras and rap genes from Entamoeba histolytica. Mol Biochem Parasitol 64: 111-120 (1994).

    PubMed  Google Scholar 

  43. Staehelin LA, Hepler PK: Cytokinesis in higher plants. Cell 84: 821-824 (1996).

    PubMed  Google Scholar 

  44. Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C: Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92: 4158-4163 (1995).

    PubMed  Google Scholar 

  45. Trainin T, Shmuel M, Delmer DP: In vitro prenylation of the small GTPase Rac13 of cotton. Plant Physiol 112: 1491-1497 (1996).

    PubMed  Google Scholar 

  46. Voytas DF, Konieczny A, Cummings MP, Ausubel FM: The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics 126: 713-721 (1990).

    PubMed  Google Scholar 

  47. Wainright PO, Hinkle G, Sogin ML, Stickel SK: Monophyletic origins of themetazoa: an evolutionary link with fungi. Science 260: 340-342 (1993).

    PubMed  Google Scholar 

  48. Xia G, Ramachandran S, Hong Y, Chan YS, Simanis V, Chua NH: Identification of plant cytoskeletal, cell cycle-related and polarity-related proteins using Schizosaccharomyces pombe. Plant J 10: 761-769 (1996).

    PubMed  Google Scholar 

  49. Yang Z, Watson JC: Molecular cloning and characterization of rho, a ras-related small GTP-binding protein from garden pea. Proc Natl Acad Sci USA 90: 8732-8736 (1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winge, P., Brembu, T. & Bones*, A.M. Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana. Plant Mol Biol 35, 483–495 (1997). https://doi.org/10.1023/A:1005804508902

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005804508902

Navigation