Skip to main content
Log in

Molecular and cellular pathology of intrinsic brain tumours

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Davis DL, Ahlbom A, Hoel D, Percy C: Is brain cancer mortality increasing in industrial countries? Am J Indust Med 19: 421–431, 1991

    Google Scholar 

  2. Modan B, Wagener DK, Feldman JJ, Rosenberg HM, Feinleib M: Increased mortality from brain tumors: a combined outcome of diagnostic technology and change in attitude toward the elderly. Am J Epidemiol 135: 1349–1357, 1992

    Google Scholar 

  3. Wrensch M, Bondy ML, Wiencke J, Yost M: Environmental risk factors for primary malignant brain tumors: a review J Neuro-oncology 17: 47–64, 1993

    Google Scholar 

  4. Pilkington GJ: The biology pathogenesis and spread of malignant glioma. Strahlentherapie und Onkologie 165: 235–238, 1989

    Google Scholar 

  5. Bernstein JJ, Woodard CA: Glioblastoma cells do not intravasate into blood vessels. Neurosurgery 36: 124–132, 1995

    Google Scholar 

  6. Martin K, Akinwunmi J, Rooprai HK, Kennedy AJ, Linke A, Ognjenovic N, Pilkington GJ: Nonexpression of CD15 by neoplastic glia: a barrier to metastasis? Anticancer Res 15: 1159–1166, 1995

    Google Scholar 

  7. Weller RO, Ellison DW: Pathology of brain tumours: the current state of diagnostic practice. Neuropath Appl Neurobiol 22: 000–000, 1996 (in press)

    Google Scholar 

  8. Kleihues P, Burger PC, Scheithauer BW: Histological typing of tumors of the central nervous system. 2nd Edn Berlin: Springer-Verlag, 1993

    Google Scholar 

  9. Kernohan JW, Habon RF, Svien HJ, Adson AW: A simplified classification of gliomas. Proc Mayo Clin 24: 71–75, 1949

    Google Scholar 

  10. Daumas-Duport C, Scheithauer B, O'Fallon J et al.: Grading of astrocytomas. Cancer 62: 2152–2165, 1988

    Google Scholar 

  11. Pilkington GJ, Lantos PL: Biological markers for tumours of the brain. In: Symon L et al. (ed.) Advances and Technical Standards in Neurosurgery, Vol 21. Springer-Verlag Wien, New York, Chapter 1 pp 2–41, 1994

    Google Scholar 

  12. Raff MC, Miller RH, Noble M: A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303: 390–396, 1983

    Google Scholar 

  13. Daumas-Duport C, Scheithauer BW, Chodkiewiez J-P, Laws Jr ER, Vedrenne C: Dysembryoplastic neuroepithelial tumour: a surgically curable tumor of young patients with intractable partial seizures. Neurosurgery 23: 545–556, 1988

    Google Scholar 

  14. Lane DP: p53, guardian of the genome. Nature 358: 15–16, 1992

    Google Scholar 

  15. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer E, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825, 1993

    Google Scholar 

  16. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E, Radinsky R: Wild type human p53 a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15: 3032–3040, 1995

    Google Scholar 

  17. Jayaram L, Prives C: Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81: 1021–1029, 1995

    Google Scholar 

  18. Prives C: How loops, sheets, and helixes help us understand p53. Cell 78: 534–546, 1994

    Google Scholar 

  19. Wu JK, Ye Z, Darras BT: Frequency of p53 tumor suppressor gene mutations in human primary brain tumors. Neurosurgery 33: 824–830, 1993

    Google Scholar 

  20. Von Deimling A, Eibl RH, Ohgaki H, Louis DN, von Ammon K, Petersen I, Kleihues P, Chung RY, Wiestler OD, Seizinger BR: p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 52: 2987–2990, 1992

    Google Scholar 

  21. Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B: Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355: 846–847, 1992

    Google Scholar 

  22. Del Arco A, Garcia I, Arribas C, Barrio R, Blazquez MG, Izquierdo JM, Izquierdo M: Timing of p53 mutations during astrocytoma tumorigenesis. Hum Mol Genet 2: 1687–1690, 1993

    Google Scholar 

  23. Litofsky NS, Hinton D, Raffel C: The lack of a role for p53 in astrocytomas in pediatric patients. Neurosurgery 34: 967–972, 1994

    Google Scholar 

  24. Felix CA, Slave I, Dunn M, Strauss EA, Phillips PC, Rorke LB, Sutton L, Bunin GR, Biegel JA: p53 gene mutations in pediatric brain tumors. Med Pediatr Oncol 25: 431–436, 1995

    Google Scholar 

  25. Merzak A, Raynal S, Rogers JP, Lawrence D, Pilkington GJ: Human wild type p53 inhibits cell proliferation and elicits dramatic morphological changes in human glioma cell lines in vitro. J Neurol Sci 127: 125–133, 1994

    Google Scholar 

  26. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M: Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52: 3213–3219, 1992

    Google Scholar 

  27. Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA, Ali-IU: Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52: 4550–4553, 1992

    Google Scholar 

  28. Hermanson M, Funa K, Koopmann J, Maintz D, Waha A, Westermark B, Heldin CH, Wiestler OD, Louis DN, von-Deimling A, Nister M: Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res 56: 164–171, 1996

    Google Scholar 

  29. Plate KH, Breier G, Farrell CL, Risau W: Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest 67: 529–534, 1992

    Google Scholar 

  30. Merzak A, Koochekpour S, Dkhissi F, Raynal S, Lawrence D, Pilkington GJ: Synergism between growth factors in the control of glioma cell proliferation, migration and invasion in vitro. Int J Oncol 6: 1079–1085, 1995

    Google Scholar 

  31. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA: Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753–756, 1994

    Google Scholar 

  32. Li YJ, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G, Hamelin R: Frequent loss of heterozygosity on chromosome 9, and low incidence of mutations of cyclin-dependent kinase inhibitors p15 (MTS2) and p16 (MTS1) genes in gliomas. Oncogene 11: 597–600, 1995

    Google Scholar 

  33. Henson JW, Schnitker BL, Correa KM, von Deimling A, Fassbender F, Xu HJ, Benediet WF, Yandell DW, Louis DN: The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol 36: 714–721, 1994

    Google Scholar 

  34. Schulze A, Zerfass K, Spitkovsky D, Henglein B, Jansen-Durr P: Activation of the E2F transcription factor by cyclin D1 is blocked by p16INK4, the product of the putative tumor suppressor gene MTS1. Oncogene 9: 3475–3482, 1994

    Google Scholar 

  35. Parry D, Bates S, Mann DJ, Peters G: Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. EMBO J 14: 503–511, 1995

    Google Scholar 

  36. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J: Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375: 503–506, 1995

    Google Scholar 

  37. Medema RH, Herrera RE, Lam F, Weinberg RA: Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci USA 92: 6289–6293, 1995

    Google Scholar 

  38. Dreyling MH, Bohlander SK, Adeyanju MO, Olopade OI: Detection of CDKN2 deletions in tumor cell lines and primary glioma by interphase fluorescence in situ hybridization. Cancer Res 55: 984–988, 1995

    Google Scholar 

  39. Moulton T, Samara G, Chung WY, Yuan L, Desai R, Sisti M, Bruce J, Tyeko B: MTS1/p16/CDKN2 lesions in primary glioblastoma multiforme. Am J Pathol 146: 613–619, 1995

    Google Scholar 

  40. Gomi A, Sakai R, Ogawa S, Shinoda S, Hirai H, Masuzawa T: Frequent loss of the cyclin-dependent kinase-4 inhibitor gene in human gliomas. Jpn J Cancer Res 86: 342–346, 1995

    Google Scholar 

  41. He J, Olson JJ, James CD: Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res 55: 4833–4836, 1995

    Google Scholar 

  42. Sonoda Y, Yoshimoto T, Sekiya T: Homozygous deletion of the MTS1/p16 and MTS2/p15 genes and amplification of the CDK4 gene in glioma. Oncogene 11: 2145–2149, 1995

    Google Scholar 

  43. Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, Hayakawa T: Homozygous deletions of p16INK4A/MTS1 and p15INK4B/MTS2 genes in glioma cells and primary glioma tissue. Cancer Lett 97: 241–247, 1995

    Google Scholar 

  44. Ueki K, Ono Y, Henson JW, Efird JT, von-Deimling A, Louis DN: CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56: 150–153, 1996

    Google Scholar 

  45. Kyritsis AP, Zhang B, Zhang W, Xiao M, Takeshima H, Bondy ML, Cunningham JE, Levin VA, Bruner J: Mutations of the p16 gene in gliomas. Oncogene 12: 63–67, 1996

    Google Scholar 

  46. Nishikawa R, Furnari FB, Lin H, Arap W, Berger MS, Cavence WK, Su-Huang HJ: Loss of P16INK4 expression is frequent in high grade gliomas. Cancer Res 55: 1941–1945, 1995

    Google Scholar 

  47. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberran1 DNA methylation in all common human cancers. Cancer Res 55: 4525–4530, 1995

    Google Scholar 

  48. Fueyo J, Gomez-Manzano C, Yung WK, Clayman GL, Liu TJ, Bruner J, Levin VA, Kyritsis AP: Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene 12: 103–110, 1996

    Google Scholar 

  49. Arap W, Nishikawa R, Furnari FB, Cavenee WK, Huang HJ: Replacement of the p16/CDKN2 gene suppresses human glioma cell growth. Cancer Res 55: 1351–1354, 1995

    Google Scholar 

  50. Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371: 257–261, 1994

    Google Scholar 

  51. Reynisdottir I, Polyak K, Iavarone A, Massague J: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 9: 1831–1845, 1995

    Google Scholar 

  52. Merzak A, McCrea S, Koochekpour S, Pilkington GJ: Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor 1. Br J Cancer 70: 199–203, 1994

    Google Scholar 

  53. Tenan M, Benedetti S, Finocchiaro G: Deletion and transfection analysis of the p15/MTS2 gene in malignant gliomas. Biochem Biophys Res Commun 217: 195–202, 1995

    Google Scholar 

  54. Otterson GA, Kratzke RA, Coxon A, Kim YW, Kaye FJ: Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9: 3375–3378, 1994

    Google Scholar 

  55. Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP, Forrester K, Gerwin B, Serrano M, Beach DH: Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci USA 91: 11045–11049, 1994

    Google Scholar 

  56. Shapiro GI, Edwards CD, Kobzik L, Godleski J, Richards W, Sugarbaker DJ, Rollins BJ: Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res 55: 505–509, 1995

    Google Scholar 

  57. Aagaard L, Lukas J, Bartkova J, Kjerulff AA, Strauss M, Bartek J: Aberrations of p16Ink4 and retinoblastoma tumour-suppressor genes occur in distinct sub-sets of human cancer cell lines. Int J Cancer 61: 115–120, 1995

    Google Scholar 

  58. Raffel C, Ueki K, Harsh GR 4th, Louis DN: The multiple tumor suppressor 1/cyclin-dependent kinase inhibitor 2 gene in human central nervous system primitive neuroectodermal tumor. Neurosurgery 36: 971–974, 1995

    Google Scholar 

  59. Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP: Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54: 4299–4303, 1994

    Google Scholar 

  60. Reifenberger G, Reifenberger J, Ichimura K, Collins VP: Amplitication at 12q13–14 in human malignant gliomas is frequently accompanied by loss of heterozygosity at loci proximal and distal to the amplification site. Cancer Res 55: 731–734, 1995

    Google Scholar 

  61. Hunter SB, Abbott K, Varma VA, Olson JJ, Barnett DW, James CD: Reliability of differential PCR for the detection of EGFR and MDM2 gene amplification in DNA extracted from FFPE glioma tissue. J Neuropathol Exp Neurol 54: 57–64, 1995

    Google Scholar 

  62. He J, Allen JR, Collins VP, Allalunis-Turner MJ, Godbout R, Day RS-3rd, James CD: CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res 54: 5804–5807, 1994

    Google Scholar 

  63. Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR, Livingston DM: Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375: 694–698, 1995

    Google Scholar 

  64. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53: 2736–2739, 1993

    Google Scholar 

  65. Hainaut P: The tumor suppressor protein p53: a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol 7: 76–82, 1995

    Google Scholar 

  66. Weller M, Malipiero U, Aguzzi A, Reed JC, Fontana A: Protooncogene bel-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J Clin Invest Jun 95: 2633–2643, 1995

    Google Scholar 

  67. Nakasu S, Nakasu Y, Nioka H, Nakajima M, Handa J: bel-2 protein expression in tumors of the central nervous system. Acta Neuropathol Berl 88: 520–526, 1994

    Google Scholar 

  68. Alderson LM, Castleberg RL, Harsh GR 4th, Louis DN, Henson JW: Human gliomas with wild-type p53 express bel-2. Cancer Res 55: 999–1001, 1995

    Google Scholar 

  69. Ritland SR, Ganju V, Jenkins RB: Region-specific loss of heterozygosity on chromosome 19 is related to the morphologic type of human glioma. Genes Chromosomes Cancer 12: 277–282, 1995

    Google Scholar 

  70. Rasheed BK, Fuller GN, Friedman AH, Bigner BB, Bigner SH: Loss of heterozygosity for 10q loci in human gliomas. Cancer 5: 75–82, 1992

    Google Scholar 

  71. Rasheed BK, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD, Bigner SH: Alterations of the TP53 gene in human gliomas. Cancer Res 54: 1324–1330, 1994

    Google Scholar 

  72. Karlbom AE, James CD, Boethius J, Cavenee WK, Collins VP, Nordenskjold M, Larsson C: Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10. Hum Genet 92: 169–174, 1993

    Google Scholar 

  73. Rasheed BK, McLendon RE, Friedman HS, Friedman AH, Fuchs HE, Bigner DD, Bigner SH: Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene 10: 2243–2246, 1995

    Google Scholar 

  74. Steck PA, Ligon AH, Cheong P, Yung WK, Pershouse MA: Two tumor suppressive loci on chromosome 10 involved in human glioblastomas. Genes Chromosomes Cancer 12: 255–261, 1995

    Google Scholar 

  75. Diedrich U, Lucius J, Bittermann HJ, Schlosser M, Eckert B, Behnke J, Pabst B: Loss of alleles in brain tumours: distribution and correlations with clinical course. J Neurol 242: 707–711, 1995

    Google Scholar 

  76. Filmus J, Pollack M, Cairncross JG, Buick RN: Amplified, overexpressed and rearranged epidermal growth factor receptor gene in a human astrocytoma cell line. Biochem Biophys Res Commun 131: 207–215, 1985

    Google Scholar 

  77. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq M, Whittle N, Waterfield MD, Ulrich A, Schlessinger J: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313: 144–147, 1985

    Google Scholar 

  78. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B: Increased expression of the epidermal growth factor receptor gene in malignant gliomas in invariably associated with gene amplification. Proc Natl Acad Sci 84: 6899–6903, 1987

    Google Scholar 

  79. Zhu A, Schaeffer J, Leslie S, Kolm P, El-Mahdi AM: Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation. Int J Radiat Oncol Biol Phys 34: 809–815, 1996

    Google Scholar 

  80. Schrock E, Thiel G, Lozanova T, du-Manoir S, Meffert MC, Jauch A, Speicher MR, Nurnberg P, Vogel S, Janisch W: Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses. Am J Pathol 144: 1203–1218, 1994

    Google Scholar 

  81. Kurpad SN, Zhao XG, Wikstrand CJ, Batra SK, McLendon RE, Bigner DD: Tumor antigens in astrocytic gliomas. Glia 15: 244–256, 1995

    Google Scholar 

  82. Wikstrand CJ, Hale LP, Batra SK, Hill ML, Humphrey PA, Kurpad SN, McLendon RE, Moscatello D, Pegram CN, Reist CJ: Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55: 3140–3148, 1995

    Google Scholar 

  83. Reist CJ, Archer GE, Kurpad SN, Wikstrand CJ, Vaidyanathan G, Willingham MC, Moscatello DK, Wong AJ, Bigner DD, Zalutsky MR: Tumor-specific anti-epidermal growth factor receptor variant III monoclonal antibodies: use of the tyramine-cellobiose radioiodination method enhances cellular retention and uptake in tumor xenogratts. Cancer Res 55: 4375–4382, 1995

    Google Scholar 

  84. Hills D, Rowlinson-Busza G, Gullick WJ: Specific targeting of a mutant, activated FGF receptor found in glioblastoma using a monoclonal antibody. Int J Cancer 63: 537–543, 1995

    Google Scholar 

  85. Lang FF, Miller DC, Koslow M, Newcomb EW: Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 81: 427–436, 1994

    Google Scholar 

  86. Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE, Huang HJ, Friedmann T, de Tribolet N, Cavence WK: Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 54: 649–652, 1994

    Google Scholar 

  87. Chozick BS, Weicker ME, Pezzullo JC, Jackson CL, Finkelstein SD, Ambler MW, Epstein MH, Finch PW: Pattern of mutant p53 expression in human astrocytomas suggests the existence of alternate pathways of tumorigenesis. Cancer 73: 406–415, 1994

    Google Scholar 

  88. Von Deimling A, Louis DN, von Ammon K, Petersen I, Wiestler OD, Seizinger BR: Evidence for a tumor suppressor gene on chromosome 19q associated with human astrocytomas, oligodendrogliomas, and mixed gliomas. Cancer Res 52: 4277–4279, 1992

    Google Scholar 

  89. Ransom DT, Ritland SR, Kimmel DW, Moertel CA, Dahl RJ, Scheithauer BW, Kelly PJ, Jenkins RB: Cytogenetic and loss of heterozygosity studies in ependymomas, pilocytic astrocytomas, and oligodendrogliomas. Genes Chromosomes Cancer 5: 348–356, 1992

    Google Scholar 

  90. Von Deimling A, Nagel J, Bender B, Lenartz D, Schramm J, Louis DN, Wiestler OD: Deletion mapping of chromosome 19 in human gliomas. Int J Cancer 57: 676–680, 1994

    Google Scholar 

  91. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP: Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145: 1175–1190, 1994

    Google Scholar 

  92. Ritland SR, Ganju V, Jenkins RB: Region-specific loss of heterozygosity on chromosome 19 is related to the morphologic type of human glioma. Genes Chromosomes Cancer 12: 277–282, 1995

    Google Scholar 

  93. Bello MJ, Leone PE, Vaquero L, de Campos JM, Kusak ME, Sarasa JL, Pestana A, Rey JA: Allelic loss at 1p and 19q frequently occurs in association and may represent early oncogenic events in oligodendroglial tumors. Int J Cancer 64: 207–210, 1995

    Google Scholar 

  94. Bello MJ, de Campos JM, Vaquero J, Kusak ME, Sarasa JL, Pestana A, Rey JA: Molecular and cytogenetic analysis of chromosome 9 deletions in 75 malignant gliomas. Genes Chromosomes Cancer 9: 33–41, 1994

    Google Scholar 

  95. Bello MJ, Leone PE, Nebreda P, de Campos JM, Kusak ME, Vaquero J, Sarasa JL, Garcia-Miguel P, Queizan A, Hernandez-Monce JL: Allelic status of chromosome 1 in neoplasms of the nervous system. Cancer Genet Cytogenet 83: 160–164, 1995

    Google Scholar 

  96. Hshimoto N, Ichikawa D, Arakawa Y, Date K, Ueda S, Nakagawa Y, Horii A, Nakamura Y, Abe T, Inazawa J: Frequent deletions of material from chromosome arm 1p in oligodendroglial tumors revealed by double-target fluorescence in situ hybridization and microsatellite analysis. Genes Chromosomes Cancer 14: 295–300, 1995

    Google Scholar 

  97. Kraus JA, Koopmann J, Kaskel P, Maintz D, Brandner S, Schramm J, Louis DN, Wiestler OD, von Deimling A: Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J Neuropathol Exp Neurol 54: 91–95, 1995

    Google Scholar 

  98. Neumann E, Kalousek DK, Norman MG, Steinbok P, Cochrane DD, Goddard K: Cytogenetic analysis of 109 pediatric central nervous system tumors. Cancer Genet Cytogenet 71: 40–49, 1993

    Google Scholar 

  99. Ransom DT, Ritland SR, Kimmel DW, Moertel CA, Dahl RJ, Scheithauer BW, Kelly PJ, Jenkins RB: Cytogenetic and loss of heterozygosity studies in ependymomas, pilocytic astrocytomas, and oligodendrogliomas. Genes Chromosomes Cancer 5: 348–356, 1992

    Google Scholar 

  100. Bijlsma EK, Voesten AM, Bijleveld EH, Troost D, Westerveld A, Merel P, Thomas G, Hulsebos TJ: Molecular analysis of genetic changes in ependymomas. Genes Chromosomes Cancer 13: 272–277, 1995

    Google Scholar 

  101. Vagner-Capodano AM, Gentet JC, Gambarelli D, Pellissier JF, Gouzien M, Lena G, Genitori L, Choux M, Ravbaud C: Cytogenetic studies in 45 pediatric brain tumors. Pediatr Hematol Oncol 9: 223–235, 1992

    Google Scholar 

  102. Karnes PS, Tran TN, Cui MY, Raffel C, Gilles FH, Barranger JA, Ying KL: Cytogenetic analysis of 39 pediatric central nervous system tumors. Cancer Genet Cytogenet 59: 12–19, 1992

    Google Scholar 

  103. Vagner-Capodano AM, Zattara-Cannoni H, Gambarelli D, Gentet JC, Genitori L, Lena G, Graziani N, Raybaud C, Choux M, Grisoli F: Detection of i(17q) chromosome by fluorescent in situ hybridization (FISH) with interphase nuclei in medulloblastoma. Cancer Genet Cytogenet 78: 1–6, 1994

    Google Scholar 

  104. Fujii Y, Hongo T, Hayashi Y: Chromosome analysis of brain tumors in childhood. Genes Chromosomes Cancer 11: 205–215, 1994

    Google Scholar 

  105. Adesina AM, Nalbantoglu J, Cavenee WK: p53 gene mutation and mdm2 gene amplification are uncommon in medulloblastoma. Cancer Res 54: 5649–5651, 1994

    Google Scholar 

  106. Jay V, Pienkowska M, Becker L, Zielenska M: Primitive neuroectodermal tumors of the cerebrum and cerebellum: absence of t(11;22) translocation by RT-PCR analysis. Mod Pathol 8: 488–491, 1995

    Google Scholar 

  107. Ng HK, Lau KM, Tse JY, Lo KW, Wong JH, Poon WS, Huang DP: Combined molecular genetic studies of chromosome 22q and the neurofibromatosis type 2 gene in central nervous system tumors. Neurosurgery 37: 764–773, 1995

    Google Scholar 

  108. Lekanne-Deprez RH, Riegman PH, van Drunen E, Warringa UL, Groen NA, Stefanko SZ, Koper JW, Avezaat CJ, Mulder PG, Zwarthoff EC: Cytogenetic, molecular genetic and pathological analyses in 126 meningiomas. J Neuropathol Exp Neurol 54: 224–235, 1995

    Google Scholar 

  109. Merel P, Haong-Xuan K, Sanson M, Morcau-Aubry A, Bijlsma EK, Lazaro C, Moisan JP, Resche F, Nishisho I, Estivill X: Predominant occurrence of somatic mutations of the NF2 gene in meningiomas and schwannomas. Genes Chromosomes Cancer 13: 211–216, 1995

    Google Scholar 

  110. Papi L, De Vitis LR, Vitelli F, Ammannati F, Mennonna P, Montali E, Bigozzi U: Somatic mutations in the neurofibromatosis type 2 gene in sporadic meningiomas. Hum Genet 95: 347–351, 1995

    Google Scholar 

  111. Akagi K, Kurahashi H, Arita N, Hayakawa T, Monden M, Mori T, Takai S, Nishisho I: Deletion mapping of the long arm of chromosome 22 in human meningiomas. Int J Cancer 60: 178–182, 1995

    Google Scholar 

  112. Slave I, MacCollin MM, Dunn M, Jones S, Sutton L, Gusella JF, Biegel JA: Exon scanning for mutations of the NF2 gene in pediatric ependymomas, rhabdoid tumors and meningiomas. Int J Cancer 64: 243–247, 1995

    Google Scholar 

  113. Schneider BF, Shashi V, von Kap-herr C, Golden WL: Loss of chromosomes 22 and 14 in the malignant progression of meningiomas. A comparative study of fluorescence in situ hybridization (FISH) and standard cytogenetic analysis. Cancer Genet Cytogenet 85: 101–104, 1995

    Google Scholar 

  114. Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick RE, Tew JM Jr, Menon AG: Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55: 4696–4701, 1995

    Google Scholar 

  115. Bello MJ, de Campos JM, Kusak ME, Vaquero J, Sarasa JL, Pestana A, Rey JA: Allelic loss at 1p is associated with tumor progression of meningiomas. Genes Chromosomes Cancer 9: 296–298, 1994

    Google Scholar 

  116. Sluyser M: Mutations in the estrogen receptor gene. Hum Mutat 6: 97–103, 1995

    Google Scholar 

  117. Corvi R, Amler LC, Savelyeva L, Gehring M, Schwab M: MYCN is retained in single copy at chromosome 2 band p23–24 during amplification in human neuroblastoma cells. Proc Natl Acad Sci USA 91: 5523–5527, 1994

    Google Scholar 

  118. Corvi R, Savelyeva L, Breit S, Wenzel A, Handgretinger R, Barak J, Oren M, Amler L, Schwab M: Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene 10: 1081–1086, 1995

    Google Scholar 

  119. Cheng JM, Hiemstra JL, Schneider SS, Naumova A, Cheung NK, Cohn SL, Diller L, Sapienza C, Brodeur GM: Preferential amplification of the paternal allele of the N-myc gene in human neuroblastomas. Nat Genet 4: 191–194, 1993

    Google Scholar 

  120. Bello MJ, Leone PE, Nebreda P, de Campos JM, Kusak ME, Vaquero J, Sarasa JL, Garcia-Miguel P, Queizan A, Hernandez-Moneo JL: Allelic status of chromosome 1 in neoplasms of the nervous system. Cancer Genet Cytogenet 83: 160–164, 1995

    Google Scholar 

  121. Takeda O, Homma C, Maseki N, Sakurai M, Kanda N, Schwab M, Nakamura Y, Kaneko Y: There may be two tumor suppressor genes on chromosome arm 1p closely associated with biologically distinct subtypes of neuroblastoma. Genes Chromosomes Cancer 10: 30–39, 1994

    Google Scholar 

  122. Caron H, Peter M, van Sluis P, Speleman F, de Kraker J, Laureys G, Michon J, Brugieres L, Voute PA, Westerveld A: Evidence for two tumour suppressor loei on chromosomal bands 1p35–36 involved in neuroblastoma: one probably imprinted, another associated with N-mye amplification. Hum Mol Genet 4: 535–539, 1995

    Google Scholar 

  123. Caron H, van Sluis P, van Roy N, de Kraker J, Speleman F, Voute PA, Westerveld A, Slater R, Versteeg R: Recurrent 1;17 translocations in human neuroblastoma reveal nonhomologous mitotic recombination during the S/G2 phase as a novel mechanism for loss of heterozygosity. Am J Hum Genet 55: 341–347, 1994

    Google Scholar 

  124. Van Roy N, Laureys G, Cheng NC, Willem P, Opdenakker G, Versteeg R, Speleman F: 1;17 translocations and other chromosome 17 rearrangements in human primary neuroblastoma tumors and cell lines. Genes Chromosomes Cancer 10: 103–114, 1994

    Google Scholar 

  125. Srivatsan ES, Ying KL, Seeger RC: Deletion of chromosome 11 and of 14q sequences in neuroblastoma. Genes Chromosomes Cancer 7: 32–37, 1993

    Google Scholar 

  126. Butti G, Gaetam P, Danova M, Assieti R, Girino M, Riecardi A: Cell kinetic studies of human intracranial tumors. J Neurosurg Sci 33: 47–53, 1989

    Google Scholar 

  127. Takahashi JA, Mori H, Fukomoto M, Igarashi K, Jaye M, Oda Y, Kikuchi H, Hatanaka M: Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumour tissues. Proc Natl Acad Sci 87: 5710–5714, 1990

    Google Scholar 

  128. Takahashi JA, Suzui H, Yasuda K et al.: Gene expression of fibroblast growth factor receptors in the tissues of human gliomas and meningiomas. Biochem Biophys Run 177: 1–7, 1991

    Google Scholar 

  129. Takahashi JA, Fukomoto M, Kozai Y et al.: Inhibition of cell growth and tumourigenesis of human glioblastoma cells by a neutralizing antibody against human basic fibroblast growth factor. FEBS Lett 228: 65–71, 1991

    Google Scholar 

  130. Werner MH, Humphery PA, Bigner DD, Bigner SH: Growth effect of epidermal growth factor (EGF) and a monoclonal antibody against the EGF receptor on four glioma cell lines. Acta Neuropathol 77: 196–201, 1988

    Google Scholar 

  131. Werner MH, Nanney LB, Stoscheck CM, King LE: Localization of immunoreactive epidermal growth factor receptors in human nervous system. J Histochem Cytochem 36: 81–86, 1988

    Google Scholar 

  132. Arita N, Hayakawa T, Izumoto S, Taki T, Ohnishi T, Yamamoto H, Bitoh S, Mogami H: Epidermal growth factor receptor in human glioma. J Neurosurgery 70: 916–919, 1989

    Google Scholar 

  133. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq M, Whittle N, Waterfield MD, Ulrich A, Schlessinger J: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313: 144–147, 1985

    Google Scholar 

  134. Nister M, Heldin CH, Wasteson A, Wetermark B: A glioma derived analog to platelet-derived growth factor: Demonstration of receptor competing activity and immunological cross-reactivity. Proct Natl Acad Sci USA 81: 926–930, 1984

    Google Scholar 

  135. Heldin CH, Westermark B, Wasteson A: Specific receptor for platelet-derived growth factor on cells from connective tissue and glia. Proc Natl Acad Sci 78: 3664–3668, 1981

    Google Scholar 

  136. Nister M, Heldin CH, Westermark B: Clonal variation in the production of a platelet-derived growth factor protein and expression of corresponding receptors in a human malignant glioma. Cancer Res 46: 332–340, 1988

    Google Scholar 

  137. Jennings MT, Maciunas RJ, Carver R, Bascom CC, Juneau P, Misulis K, Moses HL: TGF beta 1 and TGF beta 2 are potential growth regulators for low-grade and malignant gliomas in vitro; evidence in support of an autocrine hypothesis. Int J Cancer 49: 129–139, 1991

    Google Scholar 

  138. Constam DB, Philipp J, Malipiero UV, ten-Diike P, Schashner M, Fontana A: Differential expression of transforming growth factor-β1,-β2 and-β3 by glioblastoma cells, astrocytes and microglia. J Immunol 148: 1404–1410, 1992

    Google Scholar 

  139. Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engstrom U, Heldin CH: Transforming growth factor-beta 1,-beta 2 and-beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes. J Biol Chem 267: 19482–19488, 1992

    Google Scholar 

  140. Ruffin PA, Rivoltini L, Silvani A, Boiardi A, Parmiani G: Factors, including transforming growth factor beta, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells. Cancer Immunol Immunother 36: 409–416, 1993

    Google Scholar 

  141. Tada T, Yabu K, Kobayashi S: Detection of active form of transforming growth factor-beta in cerebrospinal fluid of patients with glioma. Jpn J Cancer Res 84: 544–548, 1993

    Google Scholar 

  142. Huber D, Fontana A, Bodmer S: Activation of human platelet-derived latent transforming growth factor-beta 1 by human glioblastoma cells. Comparison with proteolytic and glycosidic enzymes. Biochem J 277: 165–173, 1991

    Google Scholar 

  143. Koochekpour S, Pilkington GJ, Merzak A (Submitted): Expression of Transforming growth factor β isoforms and type II receptor in human gliomas: evidence of an auto crine mechanism in glioma progression in vivo.

  144. Jachimczak P, Maciunas RJ, Carver R, Bascom CC, Juneau P, Misulis K, Moses HL: TGF beta 1 and TGF beta 2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. J Neurosurg 78: 944–951, 1993

    Google Scholar 

  145. Merzak A, McCrea S, Koochekpour S, Pilkington GJ: Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta-1. Br J Cancer 70: 199–203, 1994

    Google Scholar 

  146. Merzak A, Koochekpour S, McCrea S, Roxanis I, Pilkington GJ: Gangliosides modulate proliferation, migration, and invasion of human brain tumour cells in vitro. Mol Chem Neuropathol 24: 121–135, 1995

    Google Scholar 

  147. Nakamura O, Ishihara I, Iwamori M, Nagai T, Matsutani M, Nomura K, Takakura K: Lipid composition of human malignant brain tumors. No To Shinkei 39: 221–226, 1987

    Google Scholar 

  148. Fredman P, von Holst H, Collins VP, Delheden B, Svennerholm L. Expression of GD3 and 3′-isoLM1 in autopsy brain tumours from patients with malignant tumors. J Neurochem 60: 99–105, 1993

    Google Scholar 

  149. Bremer EG, Hansson G, Jansson S, Erieson LE, Nilsson M: Ganglioside-mediated modulation of cell growth: specific effects of GM3 on thyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261: 2434–2440, 1986

    Google Scholar 

  150. Van Brocklyn J, Bremer EG, Yates AJ: Gangliosides inhibit platelet-derived growth factor-stimulated receptor dimerization in human glioma. J Neurochem 61: 371–374, 1993

    Google Scholar 

  151. Pilkington GJ: Tumour cell migration in the central nervous system. Brain Pathology 4: 157–166, 1994

    Google Scholar 

  152. Liotta LA: Tumor invasion and metastases: Role of the extracellular matrix (Rhodes Memorial Award lecture). Cancer Res 46: 1–7, 1986

    Google Scholar 

  153. Hart IR, Saini A: Biology of tumour metastasis. Lancet 339: 1453–1457, 1992

    Google Scholar 

  154. Yamada KM: Cell surface interactions with extracellular material. Ann Rev Biochem 52: 761–799, 1983

    Google Scholar 

  155. Yamada KM, Akiyama SK, Hasegawa T, Hasegawa E, Humphries MJ, Kennedy DW, Nagata K, Urushihara H, Olden K, Chen WT: Recent advances in research on libronectin and other cell attachment proteins. J Cell Biochem 28: 79–97, 1985

    Google Scholar 

  156. Rutka TJ, Apodaca G, Stern R, Rosenblum M: The extracellular matrix of the central and peripheral nervous systems: structure and function. J Neurosurg 69: 155–170, 1988

    Google Scholar 

  157. Peters A, Palay SL, Webster H de E: The fine structure of the nervous system: Neurons and their supporting cells, Ed 3. New York, Oxford University Press, 1991

    Google Scholar 

  158. Kepes JJ, Rubinstein LJ, Eng LJ: Pleomorphic xanthoastrocytoma: a distinctive meningocerebral glioma of young subjects with relatively favorable prognosis. A study of 12 cases. Cancer 44: 1839–1852, 1979

    Google Scholar 

  159. Paulus W, Roggendorf W, Schuppan D: Immunohistochemical investigation of collagen subtypes in human glioblastomas. Virchows Arch Pathol Anat 413: 325–332, 1988

    Google Scholar 

  160. Paulus W, Schloe W, Perentes E, Jacobi G, Warmuth-Metz M, Roggendorf W: Desmoplastic supratentorial neuroepithelial tumors of infancy. Histopathology 21: 43–49, 1992

    Google Scholar 

  161. Kakita A, Wakabayashi K, Takahashi H, Ohama E, Ikuta F, Tokiguehi S: Primary leptomeningeal glioma: Ultrastructural and laminin immunohistochemical studies. Acta Neuropathol 83: 538–542, 1992

    Google Scholar 

  162. McKeever PE, Eligiel SEG, Varani J, Castle RL, Hood TW: Products of cells cultured from gliomas. VII. Extracellular matrix proteins of gliomas which contain glial fibril lary acidic proteins. Lab Invest 60: 286–295, 1989

    Google Scholar 

  163. Merzak A, Koochekpour S, Pilkington GJ: Adhesion of human glioma cell lines to fibroncetin, laminin, vitroncetin and collagen I is modulated by gangliosides in vitro. Cell Adhesion and Communication 3: 27–43, 1995

    Google Scholar 

  164. Koochekpour S, Merzak A, Pilkington GJ: Extracellular matrix proteins inhibit proliferation, upregulate migration, and induce morphological changes in human glioma cell lines. European J Cancer 31: 375–380, 1995

    Google Scholar 

  165. Schiffer D, Cavalla P, Pilkington GJ: Proliferative properties of malignant brain tumors. In: Mikkelsen T, Bjerkvig R, Laerum O-D, Rosenblum ML (eds) Brain Tumor Invasion: Biological, Clinical and Therapeutic Considerations. John Wiley and Sons Inc, in press

  166. Pilkington GJ: The role of the extracellular matrix in neoplastic glial invasion of the nervous system. Brazilian Journal of Medical and Biological Research 29: 1159–1172, 1996

    Google Scholar 

  167. Schiffer D, Cavalla P, Chio A, Giordana MT, Marino S, Mauro A, Migheli A: Tumor cell proliferation and apoptosis in medulloblastoma. Acta Neuropathologica 87: 326–370, 1994

    Google Scholar 

  168. Pilkington GJ: Glioma heterogeneity in vitro: the significance of growth factors and gangliosides. Neuropath Appl Neurobiol 18: 434–442, 1992

    Google Scholar 

  169. Merzak A, Koochekpour S, Pilkington GJ: Cell surface gangliosides are involved in the control of human glioma cell invasion in vitro. Neurosci letters 177: 44–46, 1994

    Google Scholar 

  170. Koochekpour S, Merzak A, Pilkington GJ: Growth factors and gangliosides stimulate laminin production by human glioma cells in vitro. Neurosci Lett 186: 53–56, 1995

    Google Scholar 

  171. Mugnai G, Barletta E, Mannini A: Modulation of the integrin-mediated cell adhesion by complex gangliosides. Trends in Glycoscience and Glycotechnology 6: 199–214, 1994

    Google Scholar 

  172. Thompson LK, Horowitz PM, Bentley KL, Thomas DD, Alderete JF, Klebe RJ: Localisation of ganglioside binding site on fibronectin. J Biol Chem 261: 5209–5214, 1986

    Google Scholar 

  173. Maidment SL, Merzak A, Koochekpour S, Rooprai HK, Rucklidge GJ, Pilkington GJ: The effect of exogenous gangliosides on matrix metalloproteinase secretion by human glioma cells in vitro. Europ J Cancer 32A: 868–871, 1996

    Google Scholar 

  174. Lund-Johansen M, Bjerkvig R, Humphrey PA, Bigner SH, Bigner DD, Laerum OD: Effect of epidermal growth factor on glioma cell growth, migration and invasion in vitro. Cancer Res 50: 6039–6044, 1990

    Google Scholar 

  175. Lund-Johansen M, Forsberg K, Bjerkvig R, Laerum OD: Effects of growth factors on a human glioma cell line during invasion into rat brain aggregates in culture. Acta Neuropathol 84: 190–197, 1992

    Google Scholar 

  176. Pilkington GJ, Dunan JR, Rogers JP, Clarke TM, Knott JCA: Growth factor modulation of surface ganglioside expression in cloned neoplastic glia. Neurosc Letts 149: 1–5, 1993

    Google Scholar 

  177. Salo T, Lyons JG, Rahemtulla F, Birkendal-Hansen H, Larjava H: Transforming growth factor β-1 upregulates type IV collagenase expression in cultured human keratinocytes. J Biol Chem 226: 11436–11441, 1991

    Google Scholar 

  178. Overall CM, Wrana JL, Sodek J: Transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor β-1 in human fibroblasts. J Biol Chem 226: 14064–14071, 1991

    Google Scholar 

  179. Stetler-Stevenson WG, Brown PD, Onisto M, Levy AT, Liotta LA: Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem 265: 13933–13938, 1990

    Google Scholar 

  180. Liotta LA, Stetler-Stevenson WG: Metalloproteinases and cancer invasion. Seminars in Cancer Biology 1: 99–106, 1990

    Google Scholar 

  181. Apodaca G, Rutka JT, Bouhana K, Berens ME, Giblin JR, Rosenblum ML, McKerrow JH, Banda MJ: Expression of metalloproteinases and metalloproteinase inhibitors by fetal astrocytes and glioma cells. Cancer Res 50: 2322–2329, 1990

    Google Scholar 

  182. Rossi M, Rooprai HK, Maidment SL, Rucklidge GJ, Pilkington GJ: Matrix metalloproteinase secretion by cultured glioma cells: influence of serial passaging. Anticancer Res 16: 121–128, 1996

    Google Scholar 

  183. Nakano A, Tani E, Miyazaki K, Yamamoto Y, Furuyama J: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. J Neurosurg 83: 298–307, 1995

    Google Scholar 

  184. Bindal AK, Hommoud M, Shi WM, Wu SZ, Sawaya R, Rao JS: Prognostic significance of proteolytic enzymes in human brain tumors. J Neurooncol 22: 101–110, 1994

    Google Scholar 

  185. Rao JS, Yamamoto M, Mohaman S, Gokaslan ZL, Fuller GN, Stetler-Stevenson WG, Rao VH, Liotta LA, Nicolson GL, Sawaya RE: Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis 14: 12–18, 1996

    Google Scholar 

  186. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler-Stevenson WG, Nicolson GL, Rao IS: Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis 14: 35–42, 1996

    Google Scholar 

  187. Halaka AN, Bunning RAD, Bird CC, Gibson M, Reynolds JJ: Production of collagenase and inhibitor by intracranial tumors and dura in vitro. J Neurosurg 59: 461–466, 1983

    Google Scholar 

  188. Merzak A, Parker C, Koochekpour S, Sherbert G, Pilkington GJ: Overexpression of the 18A2/mts1 gene and down regulation of the TIMP-2 gene in invasive human glioma cell lines in vitro. Neuropath Appl Neurobiol 20: 614–619, 1994

    Google Scholar 

  189. Mignatti P, Robbins E, Rilkin DB: Tumor invasion through the amniotic membrane requirement for a proteinase cascade. Cell 47: 487–498, 1986

    Google Scholar 

  190. Quax PHA, van Muijen GNP, Weening-Verhoeff FJD, Lund LR, Dano K, Ruitner DJ, Verheijen JH: Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, Its type-1 inhibitor, and urokinase mediated matrix degradation. J Cell Biol 115: 191–199, 1991

    Google Scholar 

  191. Laurent TC, Fraser JRE: Hyaluronan. FASEB J 6: 2397–2404, 1992

    Google Scholar 

  192. Knudson W, Biswas C, Li Xiao-Qiang, Nemee ER, Toole PB: The role and regulation of tumour-associated hyaluronan. In: Evered D, Whelan J (eds) The Biology of Hyaluronan, Ciba Foundation Symposium 143, pp 150–169. Chichester: Wiley Press, 1989

    Google Scholar 

  193. Zigmund SH: Cell locomotion and chemotaxis. Curr Opin Cell Biol 1: 80–86, 1989

    Google Scholar 

  194. Steck PA, Moser RP, Bruner JM, Liang L, Freidman AN, Hwang TL, Yung WK: Altered expression and distribution of heparan sulfate proteoglycans in human gliomas. Cancer Res 49: 2096–2103, 1989

    Google Scholar 

  195. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B: CD44 is the principal cell surface receptor for hyaluronate. Cell 61: 1303–1313, 1990

    Google Scholar 

  196. Goldstein LA, Butcher EC: Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics 32: 389–397, 1990

    Google Scholar 

  197. Stamenkovic I, Aruffo A, Amiot M, Seed B: The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different potential for hyaluronate-bearing cells. EMBO J 10: 343–348, 1991

    Google Scholar 

  198. Brown TA, Bouchard T, St John T, Wayner E, Carter WG: Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol 113: 207–221, 1991

    Google Scholar 

  199. Stamenkovic I, Amiot M, Pesando JM, Seed B: A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56: 1057–1062, 1989

    Google Scholar 

  200. Quackenbush EJ, Vera S, Greaves A, Letarte M: Confirmation by peptide sequence and co-expression on various cell types of the identity of CD44 and p85 glycoprotein. Mol Immunol 27: 947–955, 1990

    Google Scholar 

  201. Gunthert U, Hoffmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P: A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cells 65: 13–24, 1991

    Google Scholar 

  202. Hofmann M, Rudy W, Zoller M, Tolg C, Ponta H, Herrlich P, Gunthert U: CD44 splice variant confer metastatic behaviour in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res 51: 5292–5297, 1991

    Google Scholar 

  203. Girgrah N, Ackerley CA, Muscarello MA: Localization of CD44 (P80) on the external surface of a human astrocytoma cell. Neuroreport 2: 441–444, 1991

    Google Scholar 

  204. Asher R, Bignami A: Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes. Exp Cell Res 203: 80–90, 1992

    Google Scholar 

  205. Kuppner MC, Van Meir EG, Gauthier T, Hamou MF, de Tribolet N: Differential expression of the CD44 molecule in human brain tumours. Int J Cancer 50: 572–577, 1992

    Google Scholar 

  206. Pilkington GJ, Akinwunmi J, Ognjenovic N, Rogers JP: Differential binding of CD44 on human gliomas in vitro. Neuroreport 4: 259–262, 1993

    Google Scholar 

  207. Ariza A, Lopez D, Mate JL, Isamat M, Musulen E, Pugol M, Ley A, Navas-Palacios JJ: The role of CD44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma: an immunohistochemical study. Hum Pathol 26: 1144–1147, 1995

    Google Scholar 

  208. Li H, Hamou MF, de Tribolet N, Jaufecrally R, Hofmann M, Diserens AC, Van Meir EG: Variant CD44 adhesion molecules are expressed in human brain metastases but not in glioblastomas. Cancer Res 53: 5345–5349, 1993

    Google Scholar 

  209. Kaaijk P, Troost D, Morsink F, Keehnen RMJ, Leenstra S, Bosch DA, Pals ST: Expression of CD44 splice variants in human primary brain tumors. J Neuro-oncol, 1995

  210. Culty M, Miyake K, Kincaide PW, Silorski E, Butcher E, Underhill C: The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol 111: 2765–2774, 1990

    Google Scholar 

  211. Miyake K, Underhill CB, Lesley J, Kinkade PW: Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med 172: 69–75, 1990

    Google Scholar 

  212. Sy MS, Guo YJ, Stamenkovic I: Distinct effects of two CD44 isoforms on tumour growth in vivo. J Exp Med 174: 859–866, 1991

    Google Scholar 

  213. Merzak A, Koochekpour S, Pilkington GJ: CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res 54: 3988–3992, 1994

    Google Scholar 

  214. Okada H, Yoshida J, Sokabe M, Wakabayashi T, Hagiwara M: Suppression of CD44 expression decreases migration and invasion of human glioma cells. Int J Cancer 66: 255–260, 1996

    Google Scholar 

  215. Koochekpour S, Pilkington GJ, Merzak A: Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int J Cancer 63: 450–454, 1995

    Google Scholar 

  216. Takeichi M: The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102: 639–655, 1988

    Google Scholar 

  217. Takeichi M: Cadherin cell adhesion receptors as a morphogenic regulator. Science 251: 1451–1455, 1991

    Google Scholar 

  218. Doki Y, Shiozaki H, Tahara H, Inoue M, OkIihara K, Kadowaki T, Takeishi M, Mori T: Correlation between E-cadherin expression and invasiveness in vitro in a human esophageal cancer cell line. Cancer Res 53: 3421–3426, 1993

    Google Scholar 

  219. Fahraeus R, Chen W, Trivedi P, Klein G, Öbrink B: Decreased expression of E-cadherin and increased invasive capacity in EBV-LMP transfected human epithelial and murine adenocarcinoma cells. Int J Cancer 52: 834–838, 1992

    Google Scholar 

  220. Filmus J, Pollack M, Cairncross JG, Buick RN: Amplified, overexpressed and rearranged epidermal growth factor receptor gene in a human astrocytoma cell line. Biochem Biophys Res Commun 131: 207–215, 1985

    Google Scholar 

  221. Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W: E-cadherin expression in squamous cell carcinomas of head and neek: inverse correlation with to mour differentiation and lymph node metastasis. Cancer Res 51; 6328–6337, 1991

    Google Scholar 

  222. Mayer B, Johnson JP, Leitl F, Jauch KW, Heiss MM, Schildberg FW, Birchmeier W, Funke I: E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res 53: 1690–1695, 1993

    Google Scholar 

  223. Shiozaki H, Tahara H, Oka H, Miyata M, Kobayashi K, Tamura S, Iihara K, Doki Y, Hirano S, Takeishi M, Mori T: Expression of immuno-reactive E-cadherin adhesion molecules in human cancers. Am J Pathol 139: 17–23, 1991

    Google Scholar 

  224. Behrens J, Mareel MM, Van Roy FM, Birchmeier W: Dissecting tumour cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 108: 2435–2447, 1989b

    Google Scholar 

  225. Frixen UH, Behrens J, Sacks M, Eberle G, Voss B, Warda A, Löchner D, Birchmeier W: E-cadherin mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185, 1991

    Google Scholar 

  226. Vleminckx K, Vakaei L Jr. Mareel M, Fiers W, Van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumour cells reveals an invasion suppressor role. Cell: 66: 107–119, 1991

    Google Scholar 

  227. Koochckpour S, Pierce E, Doshi R, Pilkington GJ, Merzak A (Submitted): E-cadherin expression is correlated to malignancy but inversely correlated to infiltrative invasiveness of gliomas in vivo and in vitro

  228. Plate KH: Gene therapy of malignant glioma via inhibition of tumor angiogenesis. Cancer Met Reviews (in press)

  229. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6, 1990

    Google Scholar 

  230. Folkman J, Shing Y: Angiogenesis. J Biol Chem 267: 10931–10934, 1992

    Google Scholar 

  231. Folkman J, Merler E, Abernathy C, Williams G: Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133: 275–288, 1971

    Google Scholar 

  232. Folkman J, Klagsbrun M: Angiogenic factors. Science 235: 442–447, 1987

    Google Scholar 

  233. Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 6398: 845–848, 1992

    Google Scholar 

  234. Alvarez JA, Baird A, Tatum J, Daucher R, Chorsky A, Gonzalez AM, Stopa EG: Localization of basic fibroblast growth factor and vascular endothelial growth factor in human glial neoplasms. Modern pathol 5: 303–307, 1992

    Google Scholar 

  235. Berkman RA, Merrill MJ, Reihold WC, Monacci WT, Saxena A, Clark WC, Ali IU, Oldfield EH: Expression of vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 91: 153–159, 1993

    Google Scholar 

  236. Koochekpour S, Bullock P, Dean A, Pilkington GJ, Merzak A: Expression of vascular endothelial growth factor in the cyst fluid of human cerebral gliomas. Oncology Reports 2: 1147–1149, 1995

    Google Scholar 

  237. Sioussat TM, Dvorak HF, Brock TA, Senger DR: Inhibition of vascular permeability factor (vascular endothelial growth factor) with antipeptide antibodies. Arch Biochem Biophys 301: 15–20, 1993

    Google Scholar 

  238. Koochckpour S, Merzak A, Pilkington GJ: Vascular endothelial growth factor production is stimulated in response to growth factors in human glioma cells. Oncology Reports 2: 1059–1061, 1995

    Google Scholar 

  239. Koochekpour S, Merzak A, Pilkington GJ: Vascular endothelial growth factor production is stimulated by TGF-β isoforms in human glioma colls in vitro. Cancer Letts 102: 209–215, 1996, 1995

    Google Scholar 

  240. Ziche M, Morbidelli L, Alessandri J, Gullino PM: Angiogenesis can be stimulated or repressed in vivo by a change in GM3:GD3 ganglioside ratio. Lab Invest 67: 711–715, 1992

    Google Scholar 

  241. Takeshima F, Iwasaki K, Shimokava I, Ikeda T, Matsuo T: Immunohistochemical localisation of gangliusides in ENU-induced rat glioma. Acta Pathol Jpn 42: 558–565, 1992

    Google Scholar 

  242. Nakamura O, Iwamori M, Matsutani M, Takakura K: Ganglioside GD3 shedding by human gliomas. Acta Neurochir Wien 109: 34–36, 1991

    Google Scholar 

  243. Koochckpour S, Pilkington GJ: Vascular and perivascular GD3 expression in human glioma. Cancer Letts 104: 97–102, 1996

    Google Scholar 

  244. Fine HA: Novel biologic therapies for malignant gliomas. Antiangiogenesis, immunotherapy, and gene therapy. Neurol-Clin 13: 827–846, 1995

    Google Scholar 

  245. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM: In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552, 1992

    Google Scholar 

  246. Takamiya Y, Short MP, Moolten FL, Fleet C, Mineta T, Breakefield XO, Martuza RL: An experimental model of retrovirus gene therapy for malignant brain tumors. J Neurosurg 79: 104–110, 1993

    Google Scholar 

  247. Chen SH, Shine HD, Goodman JC, Grossman RG, Woo SL: Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci USA 91: 3054–3057, 1994

    Google Scholar 

  248. Perez-Cruet MJ, Trask TW, Chen SH, Goodman JC, Woo SL, Grossman RG, Shine HD: Adenovirus-mediated gene therapy of experimental gliomas. J Neurosci Res 39: 506–511, 1994

    Google Scholar 

  249. Walther W, Stein U, Pfeil D: Gene transfer of human TNF alpha into glioblastoma cells permits modulation of mdr 1 expression and potentiation of chemosensitivity. Int J Cancer 61: 832–839, 1995

    Google Scholar 

  250. Glick RP, Lichtor T, Kim TS, Hangovan S, Cohen EP: Fibroblasts genetically engineered to secrete cytokines suppress tumor growth and induce antitumor immunity to a murine glioma in vivo. Neurosurgery 36: 548–555, 1995

    Google Scholar 

  251. Wei MX, Tamiya T, Hurford RK Jr, Boviatsis EJ, Tepper RI, Chiocca EA: Enhancement of interleukin 4-mediated tumor regression in athymic micc by in situ ret gene transfer. Hum Gene Ther 6: 437–443, 1995

    Google Scholar 

  252. Yamanaka R, Tanaka R, Yoshida S, Saitoh T, Fujita K: Growth inhibition of human glioma cells modulated by retrovirus gene transfection with antisense IL-8. J Neurooncol 25: 59–65, 1995

    Google Scholar 

  253. Weller M, Malipiero U, Rensing Ehl A, Barr PJ, Fontana A: Fas/APO-1 gene transfer for human malignant glioma. Cancer Res 55: 2936–2944, 1995

    Google Scholar 

  254. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominant negative FLK-1 mutant. Nature 367: 576–579, 1994

    Google Scholar 

  255. Pilkington GJ, Lantos PL: Pathology of Experimental Brain Tumours. In: Thomas DGT (ed.) ‘Neurooncology, Primary Malignant Brain Tumours’. Edward Arnold Chapter 4. pp 51–76, 1990

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merzak, A., Pilkington, G.J. Molecular and cellular pathology of intrinsic brain tumours. Cancer Metastasis Rev 16, 155–177 (1997). https://doi.org/10.1023/A:1005760726850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005760726850

Navigation