Skip to main content
Log in

Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens balsamina against Candida albicans

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The antifungal mechanism of a 20-mer peptide, Ib-AMP1, derived from Impatiens balsamina was investigated. The oxidized (disulfide bridged) Ib-AMP1 showed a 4-fold increase in antifungal activity against Aspergillus flavus and Candida albicans than reduced (non-disulfide bridged) Ib-AMP1. Ib-AMP1 had very low activity for phospholipid disruption when compared with cecropin A(1-8)-magainin 2(1-12), a α-helical amphiphatic, antimicrobial peptide. Confocal microscopy showed that Ib-AMP1 binds on cell surface or penetrates into cell membranes. These results suggested that Ib-AMP1 may manifest its antifungal activity against Candida albicans by inhibiting a distinct cellular process rather than ion channel or pore formation in cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzula P (1998) Plant defense peptides. Biopolymers (Peptide Science) 47: 479–491.

    Google Scholar 

  • Kang JH, Shin SY, Lee MK, Hahm K-S (1998) Release of aqueous contents from phospholipid vesicles induced by cecropin A(1–8)-magainin 2(1–12) hybrid and its analogues. J. Peptide Res. 52: 45–50.

    Google Scholar 

  • MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu L-r (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061: 297–303.

    Google Scholar 

  • Merrifield RB (1986) Solid phase synthesis. Science 232: 341–347.

    Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 368: 257–262.

    Google Scholar 

  • Patel SU, Osborn R, Rees S, Thornton JM (1998) Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 37: 983–990.

    Google Scholar 

  • Shin SY, Watanabe M, Kako K, Ohtaki T, Munekata E (1994) Structure-activity relationships of human epidermal growth factor (h-EGF). Life Sci. 55: 131–139.

    Google Scholar 

  • Shin SY, Lee MK, Kim KL, Hahm K-S (1997) Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J. Peptide Res. 50: 279–285.

    Google Scholar 

  • Shin SY, Kang JH, Hahm K-S (1999) Structure-antibacterial, antitumor and hemolytic activity relationships of cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J. Peptide Res. 53: 82–90.

    Google Scholar 

  • Tailor RH, Acland DP, Attenborough S, Cammue BPA, Evans IJ, Osborn RW, Ray JA, Rees SB, Broekaert WF (1997) A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem. 272: 24480–24487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.G., Shin, S.Y., Kim, DH. et al. Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens balsamina against Candida albicans . Biotechnology Letters 21, 1047–1050 (1999). https://doi.org/10.1023/A:1005636610512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005636610512

Navigation