Skip to main content
Log in

Constraints on Group Size in Red Colobus and Red-tailed Guenons: Examining the Generality of the Ecological Constraints Model

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The ecological constraints model proposes that an increase in group size will increase intragroup feeding competition and thereby constrain group size. Although this model has received wide acceptance, tests of it are based only on a few studies of species that have similar ecological requirements and social organizations, and there are reasons to question the widespread acceptance of the assumptions underpinning it. Via a 2-year study, we explored determinants of group size in species that feed on markedly different types of foods: the folivorous red colobus (Procolobus pennantii) and the frugivorous/insectivorous red-tailed guenon (Cercopithecus ascanius). We established 4 study sites approximately 15 km apart in Kibale National Park, Uganda, to examine the relationship between average group size and food availability. In both species, we quantified interdemic variation in diet, density of food trees, rate of travel, and group size. Red colobus at all sites relied heavily on leaf resources (75.5%–86.9%), but fruit (6.4%–13.9%) and flowers (2.0%–13.9%) were important in some populations. In general, red-tailed guenons fed on fruit (35.7%–59.7%), insects (14.5%–17.6%), and young leaves (12.2%–32.8%), but the amount of time allocated to these foods varied among sites. Average monthly density of trees bearing food items ranged among sites from 45 to 79 trees/ha for red colobus and from 19.6 to 67.3 trees/ha for red-tailed guenons. For both species, rate of travel was similar among sites, with one exception for red colobus. Average red colobus group size varied among sites from 14 to 40 (28 groups counted). Red-tailed guenon group size varied among sites from 11 to 24 (16 groups counted). As predicted by the ecological constraints model, group size increased with food tree density across sites for both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altmann, S. (1974). Baboons, space, time, and energy. Amer. Zool. 14: 221–248.

    Google Scholar 

  • Barton, R. A., Byrne, R. W., and Whiten, A. (1996). Ecology, feeding competition and social structure in baboons. Behav. Ecol. Sociobiol. 38: 321–329.

    Google Scholar 

  • Bradbury, J. W., and Vehrencamp, S. L. (1976). Social organization and foraging in emballonurid bats. II. A model for the determination of group size. Behav. Ecol. Sociobiol. 1: 383–404.

    Google Scholar 

  • Butynski, T. M. (1990). Comparative ecology of blue monkeys (Cercopithecus mitis) in highand low-density subpopulations. Ecol. Monogr. 60: 1–26.

    Google Scholar 

  • Byrne, R. W., Whiten, A., Henzi, S. P., and McCulloch, F. M. (1993). Nutritional constraints on mountain baboons (Papio ursinus): Implications for baboon socioecology. Behav. Ecol. Sociobiol. 33: 233–246.

    Google Scholar 

  • Chapman, C. A. (1988a). Patch use and patch depletion by the spider and howling monkeys of Santa Rosa National Park, Costa Rica. Behaviour 105: 88–116.

    Google Scholar 

  • Chapman, C. A. (1988b). Patterns of foraging and range use by three species of neotropical primates. Primates 29: 177–194.

    Google Scholar 

  • Chapman, C. A. (1989). Ecological constraints on group size in three species of neotropical primates. Folia Primatol. 73: 1–9.

    Google Scholar 

  • Chapman, C. A. (1990a). Ecological constraints on group size in three species of neotropical primates. Folia Primatol. 73: 1–9.

    Google Scholar 

  • Chapman, C. A. (1990b). Association patterns of spider monkeys: The influence of ecology and sex on social organization. Behav. Ecol. Sociobiol. 26: 409–414.

    Google Scholar 

  • Chapman, C. A., and Chapman, L. J. (2000). Determinants of group size in social primates: The importance of travel costs. In Boinski, S. and Garber, P. (eds.), Group Movement in Social Primates and Other Animals: Patterns, Processes, and Cognitive Implications. University of Chicago Press, Chicago, pp. 24–42.

    Google Scholar 

  • Chapman, C. A. and Chapman L. J. (1999). Implications of small scale variation in ecological conditions for the diet and density of red colobus monkeys. Primate 40: 215–232.

    Google Scholar 

  • Chapman, C. A. and Chapman L. J. (1999). Forest regeneration in logged and unlogged forests of Kibale National Park, Uganda. Biotropica 29: 396–412.

    Google Scholar 

  • Chapman, C. A., Chapman, L. J., Wrangham, R, Isabirye-Basuta, G., and Ben-David, K. (1997). Spatial and temporal variability in the structure of a tropical forest. Afr. J. Ecol. 35: 287–302.

    Google Scholar 

  • Chapman, C. A., White, F., and Wrangham, R. W. (1994). Party size in chimpanzees and bonobos: A reevaluation of theory based on two similarly forested sites. In McGrew, W. C., Marchant, L. F., and Nishida T. (eds.), Chimpanzee Cultures, Harvard University Press, Cambridge, pp. 45–57.

    Google Scholar 

  • Chapman, C. A., Wrangham, R. W., and Chapman, L. J. (1995). Ecological constraints on group size: An analysis of spider monkey and chimpanzee subgroups. Behav. Ecol. Sociobiol. 36: 59–70.

    Google Scholar 

  • Chapman, C. A., Wrangham, R. W., Chapman, L. J., Kennard, D. K., and Zanne, A. E. (1999). Fruit and flower phenology at two sites in Kibale National Park, Uganda. J. Trop. Ecol. 15: 189–211.

    Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging: The marginal value theorem. Theor. Pop. Biol. 9: 129–136.

    Google Scholar 

  • Cheney, D. L. (1992). Intragroup cohesion and intergroup hostility: The relation between grooming distributions and intergroup competition among female primates. Behav. Ecol. 3: 334–345.

    Google Scholar 

  • Chism, J., and Rowell, T. E. (1988). The natural history of patas monkeys. In Gautier-Hion, A., Bourliere, F., Gautier, J.-P., and Kingdon, J. (eds.), A Primate Radiation: Evolution of the African Guenons. Cambridge University Press, Cambridge, pp. 412–438.

    Google Scholar 

  • Clutton-Brock, T. T., and Harvey, P. H. (1977). Primate ecology and social organization. J. Zool., London 183: 1–39.

    Google Scholar 

  • Dittus, W. P. J. (1979). The evolution of behaviour regulating density and age-specific sex rations in a primate population. Behaviour 69: 265–302.

    Google Scholar 

  • Elgar, M. A. (1986). House sparrows establish foraging flocks by giving chirrup calls if the resources are divisible. Anim. Behav. 34: 169–174.

    Google Scholar 

  • Howard, P. C. (1991). Nature Conservation in Uganda' Tropical Forest Reserves. IUCN, Gland, Switzerland.

    Google Scholar 

  • Isbell, L. A. (1983). Daily ranging behavior of red colobus (Colobus badius tephrosceles) in Kibale Forest, Uganda. Folia Primatol. 41: 34–48.

    Google Scholar 

  • Isbell, L. A. (1991). Contest and scramble competition: patterns of female aggression and ranging behaviour among primates. Behav. Ecol. 2: 143–155.

    Google Scholar 

  • Isbell, L. A., Pruetz, J. D., and Young, T. P. (1998). Movements of vervets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas) as estimators of food resource size, density, and distribution. Behav. Ecol. Sociobiol. 42: 123–133.

    Google Scholar 

  • Janson, C. H. (1985). Aggressive competition and individual food consumption in wild brown capuchin monkeys (Cebus apella). Behav. Ecol. Sociobiol. 18: 125–138.

    Google Scholar 

  • Janson, C. H. (1988). Intra-specific food competition and primate social structure: A synthesis. Behaviour 105: 1–17.

    Google Scholar 

  • Janson, C. H., and Goldsmith, M. L. (1995). Predicting group size in primates: Foraging costs and predation risks. Behav. Ecol. 6: 326–336.

    Google Scholar 

  • Kingston, B. (1967). Working Plan for Kibale and Itwara Central Forest Reserves. Entebbe, Uganda, Uganda Forest Department.

    Google Scholar 

  • MacDonald, D. W. (1979). The flexible social system of the golden jackal, Canis aureus. Behav. Ecol. Sociobiol. 5: 17–38.

    Google Scholar 

  • McDonald, D. W. (1983). The ecology of carnivore social behaviour. Nature 301: 379–384.

    Google Scholar 

  • Milton, K. (1984). Habitat, diet, and activity patterns of free-ranging woolly spider monkeys (Brachyteles arachnoides E. Geoffroyi 1806). Int. J. Primatol. 5: 491–514.

    Google Scholar 

  • Nicholson, A. J. (1954). An outline of the dynamics of animal populations. Aust. J. Zool. 2: 9–65.

    Google Scholar 

  • Olupot, W., Chapman, C. A., Brown, C. H., and Waser, P. M. (1994). Mangabey (Cercocebus albigena) population density, group size, and ranging: A twenty-year comparison. Amer. J. Primatol. 32: 197–205.

    Google Scholar 

  • Osmaston H. A. (1959). Working Plan for the Kibale and Itwara Forests. Uganda Forest Dept. Entebbe, 60 p.

    Google Scholar 

  • Pulliam H. R., and Caraco, T. (1984). Living in groups: is there an optimal group size? In Krebs, J. R., and Davis, N. (eds.), Behavioural Ecology, Sinauer, Sunderland, pp. 122–147.

    Google Scholar 

  • Schaik, C. P. van. (1989). The ecology of social relationships amongst female primates. In Standen, V. and Foley, R. A. (eds.), Comparative Socioecology, Blackwell Press, Cambridge, pp. 195–218.

    Google Scholar 

  • Schaik C. P. van, and M. A. van Noordwijk. (1988). Scramble and contest in feeding competition among female long-tailed macaques (Macaca fascicularis). Behaviour 105: 77–98.

    Google Scholar 

  • Schaik C. P. van, M. A. van Noordwijk, R.J. Boer, and I. Den Tonkelaar. (1983). The effect of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca fascicularis). Behav. Ecol. Sociobiol. 13: 173–181.

    Google Scholar 

  • Skorupa, J. P. (1988). The effect of selective timber harvesting on rain-forest primates in Kibale Forest, Uganda. Unpublished Ph.D. Dissertation, University of California, Davis, California, USA.

    Google Scholar 

  • Stephens, D. W., and Krebs, J. R. (1986). Foraging Theory. Princeton University Press, Princeton.

    Google Scholar 

  • Strier, K. B. (1989). Effects of patch size on feeding associations in muriquis (Brachyteles arachnoides). Folia Primatol. 52: 70–77.

    Google Scholar 

  • Struhsaker, T. T. (1967). Ecology of vervet monkeys (Cercopithecus aethiops) in the Masai-Amboseli Game Reserve, Kenya. Ecology 48: 891–904.

    Google Scholar 

  • Struhsaker, T. T. (1975). The red colobus monkey. University of Chicago Press, Chicago.

    Google Scholar 

  • Struhsaker, T. T. (1980). Comparison of the behaviour and ecology of red colobus and redtail monkeys in the Kibale Forest, Uganda. Afr. J. Ecol. 18: 33–51.

    Google Scholar 

  • Struhsaker, T. T. (1997). Ecology of an African Rain Forest: Logging in Kibale and the Conflict between Conservation and Exploitation. Gainesville, Florida, The University Presses of Florida.

    Google Scholar 

  • Struhsaker, T. T., and Leland, L. (1987). Colobines: Infanticide by adult males. In Smuts, B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., and Struhsaker, T. T. (eds.), Primate Societies, University of Chicago Press, Chicago, pp. 83–97.

    Google Scholar 

  • Struhsaker, T. T., and Leland, L. (1988). Group fission in red-tail monkeys (Cercopithecus ascanius) in the Kibale Forest, Uganda. In Gautier-Hion, A., Bourliere, F., Gautier, J.-P., and Kingdon, J. A Primate Radiation: Evolution of the African Guenons. Cambridge University Press, Cambridge, pp. 364–388.

    Google Scholar 

  • Symington, M. M. (1987). Ecological and social correlates of party size in the black spider monkey. Ateles paniscus chamek. Ph.D. Dissertation, Princeton, New Jersey.

  • Symington, M. M. (1988a). Food competition and foraging party size in the black spider monkey (Ateles paniscus chamek). Behaviour 105: 117–134.

    Google Scholar 

  • Symington, M. M. (1988b). Demography, ranging patterns and activity budgets of black spider monkeys (Ateles paniscus chamek) in the Manu National Park, Peru. Amer. J. Primatol. 15: 45–67.

    Google Scholar 

  • Symington, M. M. (1990). Fission-fusion social organization in Ateles and Pan. Int. J. Primatol. 11: 47–61.

    Google Scholar 

  • Terborgh, J. (1983). Five New World Primates. Princeton University Press, Princeton.

    Google Scholar 

  • Terborgh, J., and Janson, C. H. (1986). The socioecology of primate groups. Ann. Rev. Ecol. Syst. 17: 111–135.

    Google Scholar 

  • Waser, P. M. (1974). Inter-group interactions in a forest monkey the mangabey Cercocebus albigena. Ph.D. Dissertation, Rockefeller University, New York.

    Google Scholar 

  • Waser, P. M. (1981). Sociality or territorial defense? The influence of resource renewal. Behav. Ecol. Sociobiol. 8: 231–237.

    Google Scholar 

  • White, F. J., and Wrangham, R. W. (1988). Feeding competition and patch size in the chimpanzee species Pan paniscus and Pan troglodytes. Behaviour 105: 148–164.

    Google Scholar 

  • Whitten, P. (1983). Diet and dominance among female vervet monkeys (Cercopithecus aethiops). Amer. J. Primatol. 5: 139–159.

    Google Scholar 

  • Wrangham, R. W., Gittleman, J. L., and Chapman, C. A. (1993). Constraints on group size in primates and carnivores: population density and day-range as assays of exploitation competition. Behav. Ecol. Sociobiol. 32: 199–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, C.A., Chapman, L.J. Constraints on Group Size in Red Colobus and Red-tailed Guenons: Examining the Generality of the Ecological Constraints Model. International Journal of Primatology 21, 565–585 (2000). https://doi.org/10.1023/A:1005557002854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005557002854

Navigation