Skip to main content
Log in

Mitochondrial Sequences as Indicators of Genetic Classification in Bush Babies

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Systematic relationships among the African bush babies are not well understood. Various generic designations are currently in use. Some authors refer all species to a single genus (Galago), while others recognize ≤4 genera. Phylogenetic reconstructions based on morphology, karyology, allozymes and vocal repertoires have generated inconsistent hypotheses of relationship. We analyzed partial sequences of three mitochondrial genes (270 bp from cytochrome b, 387 bp from 12S rRNA, and 241 bp from 16S rRNA, total 898 bp) to resolve some uncertainties. We sampled taxa from each of three genera: Galagoides alleni, G. demidoff and G. zanzibaricus; Galago senegalensis, G. gallarum and G. moholi; and Otolemur crassicaudatus and O. garnettii. Outgroup taxa were Asian lorises: Nycticebus coucang and Loris tardigradus. We analyzed sequences separately and in combination, and modeled phylogenies using maximum parsimony, weighted parsimony, neighbor-joining and maximum-likelihood. We obtained some variation in phylogenetic inference depending on sequence and analytical method, but the results also gave strong phylogenetic signals. The lesser bush babies invariably formed a clade, showing evidence of very recent radiation. The greater bush babies also formed a clade, marked by somewhat greater interspecific genetic distances, which was allied with Galagoides alleni in most instances. Galagoides demidoff and G. zanzibaricus are not closely related, though both diverged early in the history of the group. A genus comprising Galagoides alleni, G. demidoff and G. zanzibaricus is not supported by our data. The most likely alliance for Galagoides alleni is within the genus Otolemur. Of the three partial sequences employed in the study, 16S rRNA gave the most consistent results, while cytochrome b was least informative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Collura, R. V., and Stewart, C.-B. (1995). Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378: 485–489.

    Google Scholar 

  • Crovella, S., Masters, J. C., and Rumpler, Y. (1994). Highly repeated DNA sequences as phylogenetic markers among the Galaginae. Am. J. Primatol. 32: 177–185.

    Google Scholar 

  • De Boer, L. E. M. (1973). Cytotaxonomy of the Lorisoidea (Primates: Prosimii). 1. Chromosome studies and karyological relationships in the Galagidae. Genetica 44: 155–193.

    Google Scholar 

  • DelPero, M., Crovella, S., Cervella, P., Ardito, G., and Rumpler, Y. (1995). Phylogenetic relationships among Malagasy lemurs as revealed by mitochondrialDNA sequence analysis. Primates 36: 431–440.

    Google Scholar 

  • DelPero, M., Masters, J. C., Cervella, P., Crovella, S., Ardito, G., and Rumpler, Y. (in press). Phylogenetic relationships among the Malagasy lemuriforms (Primates: Strepsirrhini) as indicated by sequence data from the 12S rRNA mitochondrial gene. Zool. J. Linn. Soc.

  • Eaglen, R. H. (1980). The systematics of living Strepsirhini, with special reference to the Lemuridae. Ph.D. thesis, Duke University, Durham, North Carolina.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27: 401–410.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein, J. (1988). Phylogenies from molecular sequences: Inference and reliability. Annu. Rev. Genet. 22: 521–565.

    Google Scholar 

  • Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package), Version 3.5c. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Hill, W. C. O. (1953). Primates. Comparative Anatomy and Taxonomy, Vol. I. Strepsirhini. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42: 182–192.

    Google Scholar 

  • Hillis, D. M., and Dixon, M. T. (1991). Ribosomal RNA: Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66: 411–453.

    Google Scholar 

  • Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrialDNAevolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196–6200.

    Google Scholar 

  • Masters, J. C. (1988). Speciation in the greater galagos (Prosimii: Galaginae): Review and synthesis. Biol. J. Linn. Soc. 34: 149–174.

    Google Scholar 

  • Masters, J. C. (1998). Speciation in the lesser galagos. Folia Primatol. 69 (suppl. 1): 357–370.

    Google Scholar 

  • Masters, J. C., Rayner, R. J., Ludewick, H., Zimmermann, E., Molez-Verriè re, N., Vincent, F. and Nash, L. T. (1994). Phylogenetic relationships among the Galaginae as indicated by erythrocytic allozymes. Primates 35: 177–190.

    Google Scholar 

  • Masters, J. C., Stanyon, R., and Romagno, D. (1987). Standardized karyotypes for the greater galagos, Galago crassicaudatus E. Geoffroy, 1812 and G. garnettii (Ogilby, 1838) (Primates: Prosimii). Genetica 75: 123–129.

    Google Scholar 

  • Matschie, P. (1893). Ñber anscheinend neue Africanische Säugethiere. Sber. Ges. Naturf. Freunde Berl. 4: 107–114.

    Google Scholar 

  • McNiff, B. E., and Allard, M. W. (1998). A test of Archonta monophyly and the phylogenetic utility of the mitochondrial gene 12S rRNA. Am. J. Phys. Anthropol. 107: 225–241.

    Google Scholar 

  • Meyer, A. (1994). Shortcomings of the cytochrome b gene as a molecular marker. Trends Ecol. Evol. 9: 278–280.

    Google Scholar 

  • Mindell, D. P., and Honeycutt, R. L. (1990). Ribosomal RNA in vertebrates: Evolution and phylogenetic implications. Annu. Rev. Ecol. Syst. 21: 541–566.

    Google Scholar 

  • Nash, L. T., Bearder, S. K., and Olson, T. R. (1989). Synopsis of Galago species characters. Int. J. Primatol. 10: 57–80.

    Google Scholar 

  • Olson, T. R. (1979). Studies on aspects of the morphology of the genus Otolemur. Ph.D. thesis, University of London, London.

    Google Scholar 

  • Ortí G., and Meyer, A. (1997). The radiation of characiform fishes and the limits of resolution of mitochondrial ribosomal sequences. Syst. Biol. 46: 75–100.

    Google Scholar 

  • Parker, A., and Kornfield, I. (1996). An improved amplification and sequencing strategy for phylogenetic studies using the mitochondrial large subunit rRNA gene. Genome 39: 793–797.

    Google Scholar 

  • Sambrook, J. E., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Schwartz, J. H., and Tattersall, I. (1985). Evolutionary relationships of living lemurs and lorises (Mammalia, Primates) and their potential affinities with European Eocene Adapidae. Anthropol. Pap. Am. Mus. Nat. Hist. 60: 1–100.

    Google Scholar 

  • Schwarz, E. (1931). On the African long-tailed lemurs or galagos. Ann. Mag. Nat. Hist. (ser. 10) 7: 41–66.

    Google Scholar 

  • Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651–701.

    Google Scholar 

  • Springer, M. S., and Douzery, E. (1996). Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol. 43: 357–373.

    Google Scholar 

  • Swofford, D. L. (1993). Phylogenetic analysis using parsimony (PAUP). Illinois Natural History Survey, Urbana, IL.

    Google Scholar 

  • Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Google Scholar 

  • Wesselman, H. B. (1984). The Omo micromammals: Systematics and paleoecology of early man sites from Ethiopia. Contrib. Vertebr. Evol. 7: 1–219.

    Google Scholar 

  • Yoder, A. D. (1994). Relative position of the Cheirogaleidae in strepsirhine phylogeny: A comparison of morphological and molecular methods and results. Am. J. Phys. Anthropol. 94: 25–46.

    Google Scholar 

  • Yoder, A. D., Cartmill, M., Ruvolo, M., Smith, K., and Vilgalys, R. (1996). Ancient single origin for Malagasy primates. Proc. Natl. Acad. Sci. USA 93: 5122–5126.

    Google Scholar 

  • Zimmermann, E. (1990). Differentiation of vocalizations in bushbabies (Galaginae, Prosimiae, Primates) and the significance for assessing phylogenetic relationships. Z. Zool. Syst. Evolut.-forsch. 28: 217–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DelPero, M., Masters, J.C., Zuccon, D. et al. Mitochondrial Sequences as Indicators of Genetic Classification in Bush Babies. International Journal of Primatology 21, 889–904 (2000). https://doi.org/10.1023/A:1005502927658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005502927658

Navigation