Skip to main content
Log in

Effect of altitude on hydrology, productivity and species richness in Kodayar – a tropical peninsular Indian aquatic system

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To study effects of altitude, monthly sampling was undertaken from June 1993 to May 1996 in the upper Kodayar reservoir (1312 m ASL), the lower Kodayar (92 m ASL) and Azhakia Pandiapuram (plain) (Tamilnadu, India). Temperature decreased with elevation at a rate of 1 °C per 240 m; the thermal range also decreased with increasing altitude. The number of days and quantity of precipitation decreased from 161 days and 366 cm yr-1 in the upper Kodayar to 92 days and 127 cm yr-1 at the Azhakia Pandiapuram (APP). Transparency decreased from 1.5 m at the upper Kodayar to about 0.5 m at the APP. Dissolved oxygen increased with decreasing altitude but remained high (>7 mg l-1) in all the three systems. Throughout the investigation, the upper Kodayar reservoir (<6.8) and lower Kodayar lake (<7.0) remained acidic, while the APP was always alkaline. Trends for CO2 and alkalinity of the three Kodayar systems were parallel to those for pH. Though widely oscillating across calendar months, nitrate averaged c. 30 μg l-1, while phosphate increased from 8 μg l-1 in the upper Kodayar to 18 μg l-1 at the APP. Wide oscillations in nitrate suggest that it may be limiting productivity more than phosphorus. Chlorophyll-a values were c. 1.9 μg l-1 throughout the year in the upper Kodayar, and between 10 and 20 μg l-1 in the other two ecosystems; values peaked during the dry season, from January to April. Chlorophyll-a concentrations correlated positively with productivity; every μg increase in chlorophyll-a caused 0.15 gC m-3 d-1 more production. The pristine water of the fragile upper Kodayar had the lowest productivity, and poorest diversity and population density. The species richness was assessed using organisms larger than 75 μm filtered by a plankton net. There were five species (Staurastrum spp., Staurodesmus spp., Botryococcus) of phytoplankton, and three species of cladocerans and five species of copepods; population density averaged to 159 l-1 for phytoplankton, 0.3 l-1 for zooplankton. The lower Kodayar proved to be the richest for species diversity; there were 14 species of phytoplankton and six species of cladocerans and six species of copepods. Population density averaged to 203 l-1 for phytoplankton and 0.44 l-1 for zooplankton. The APP displayed moderate species richness; there were seven species of phytoplankton and six species of cladocerans, eight species of copepods and three species of rotifer; but the population density was comparatively higher than the upper and lower Kodayar; it averaged 412 l-1 for phytoplankton and 5.9 l-1 for zooplankton. These values fell within the range of values reported for other tropical and temperate lakes. Staurastrum, Ceriodaphnia cornuta, Tropocyclops, Thermocyclops and Mesocyclops sp. were present in all the aquatic systems and tolerated wide range pH between 6.5 and 8.0. APP was the most productive (4.4 gC m-3 d-1). Productivity holds positive correlation with pH and temperature; for every 1 °C increase in temperature it increased by 0.39 gC m-3 d-1 in these aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, S. A., N. Abbasi & K. K. S. Bhatia, 1996. Wetlands of India: ecology and threats. Vol. 3. The Wetlands of Kerala, Discovery Publishing House, New Delhi: 33–64.

    Google Scholar 

  • APHA, 1985. Standard methods for the examination of water and waste water. 16th edn. American Publication Health Assoc. Inc. Washington D.C. 1268 pp.

    Google Scholar 

  • APHA, 1992. Standard methods for the examination of water and waste water. 18th edn. American Publication Health Assoc. Inc. Washington D.C. 1002 pp.

    Google Scholar 

  • Beaver, J. R. & T. I. Crisman, 1991. Temporal variability in algal biomass and primary productivity in Florida lakes relative to latitudinal gradients, organic colour and trophic state. Hydrobiologia 224: 89–97.

    Google Scholar 

  • Bhatnagar, G. P., 1984. Limnological study on lower lake, Bhopal Research Project. Man and Biosphere Programme, Unesco, Department of Environment, Govt. of India, New Delhi: 73 pp.

    Google Scholar 

  • Devaraj, K. V., H. S. Mahadeva & A. A. Fazal, 1988. Hydrobiology of Hemavathi Reservoir. Proc. of Asian Fish. Soc., Mangalore: 323–327.

    Google Scholar 

  • Dumont, H. J. & Y. R. Reddy, 1993. A reappraisal of the genus Phyllodiaptomus Kiefer, 1936, with the description of P. wellekensae n.sp. from India, and a redescription of P. tunguidus Shen & Tai, 1964 from China (Copepoda, Calanoidea). Hydrobiologia 263: 65–93

    Google Scholar 

  • Ganapathi, S. V. & Chacko, 1951. A hydrobiological survey of the waters of upper Palnis with a view of fish culture. Arch. Hydrobiol. 45: 543–556.

    Google Scholar 

  • Gasse, G., J. F. Talling & P. Kilham, 1983. Diatom assemblages in East Africa: Classification, distribution and ecology. Rev. Hydrobiol. Trop. 16: 3–34.

    Google Scholar 

  • Green, J., S. A. Corbet, E. Watts & O. B. Lan, 1996. Comparative studies on Indonesian lakes. In Schiemer, F. & K. T. Boland (eds), Perspective in Tropical Limnology. Academic Publishing, Amsterdam: 101–111.

    Google Scholar 

  • Haniffa, M. A. & T. J. Pandian, 1978. Morphometry, primary productivity and energy flow in a tropical pond. Hydrobiologia 59: 23–48.

    Google Scholar 

  • Harikrishnan, K. & P. K. A. Azis, 1989. Ecology of the Neyyar reservoir a preliminary report. Proceedings of Kerala Science Congress, Cochin 140-145 pp.

    Google Scholar 

  • Hart, R. C., 1996. Comparative ecology of plankton in cascading warm-water reservoirs: aspects of relevance to tropical limnology. In Schiemer, F. & K. T. Boland (eds), Perspective in Tropical Limnology. Academic Publishing, Amsterdam: 113–130.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. John Wiley & Sons. New York: 1115 pp.

    Google Scholar 

  • Jana, B. B. & G. Kundu, 1993. Influence of prolonged summer on the limnology and chlorophyll-a content of phytoplankton in two tropical fish ponds. Arch. Hydrobiol. Suppl. 90: 507–532.

    Google Scholar 

  • Jayachandran, K. V. & N. I. Joseph, 1988. Meterological and hydrographical features of Vellayani lake, Kerala, India. Int. Rev. ges. Hydrobiol. 73: 113–121.

    Google Scholar 

  • Job, S. V. & V. Kannan, 1980. The detritus limnology of Sathiar reservoir. Hydrobiologia 72: 81–84.

    Google Scholar 

  • Jones, J. R. & R. W. Bachmann, 1976. Prediction of phosphorus and chlorophyll levels in lakes. J. Wat. Pollut. Cont. Fed. 48: 2176–2182.

    Google Scholar 

  • Kannan, V. & S. V. Job, 1980. Diurnal, seasonal, and vertical study of primary production in Sathiar reservoir. Hydrobiologia 70: 171–178.

    Google Scholar 

  • Khatri, T. C., 1985. A note on the limnological characters of the Idukki Reservoir. Indian J. Fish. 32: 267–269.

    Google Scholar 

  • Khatri, T. C., 1992. Hydrobiology of Idukki reservoir of Kerala, India. Oikoassay 9: 41–46.

    Google Scholar 

  • Lewis, W. M. Jr., 1978. A compositional, phytogeographical and elementary structural analysis of the phytoplankton in a tropical lake: Lake Lanao, Philippines. J. Ecol. 66: 213–226.

    Google Scholar 

  • Lewis, W. M. Jr., 1996. Tropical lakes: how latitude makes a difference. In Schiemer, F. & K. T. Boland (eds), A Perspective in Tropical Limnology. Academic Publishing, Amsterdam: 43–64.

    Google Scholar 

  • Likens, G. E., 1975. Primary production of inland aquatic ecosystems. In Lieth, H. & R. H. Whittaker (eds), The Primary Productivity of the Biosphere. Springer-Verlag, New York.

    Google Scholar 

  • Margraf, J., M. Voggesberger & P. P. Milan, 1996. Limnology of Ifugao rice terraces, Philippines. In Schiemer, F. & K. T. Boland (eds), Perspective in Tropical Limnology. Academic Publishing, Amsterdam: 305–319.

    Google Scholar 

  • Michael, R.G & B.K. Sharma, 1988. Fauna of India and adjacent countries (Crustacea: Branchiopods: Cladocera) Zool. Sur. India, Publ. No 1. 262 pp.

  • Munshi, J. S. D. & D. K. Singh, 1991. Physiochemical profile of river Ganga at Kahalgaon, Bihar, India. In Gopal, B. & V. Asthana (eds), Aquatic Sciences in India. Indian Assoc. Limnol. Oceanogr: 83-92.

  • Murthy, K. S. N., T. S. N. Murthy & V. Seshavatharam, 1985. Studies on the effect of some heavy metals on the phytoplankton production. J. Swamy Bot. Club 2: 21–26.

    Google Scholar 

  • Nasar, S. A. K. & J. D. Munshi, 1975. Studies of primary production in a freshwater pond. Jap. J. Ecol. 25: 21–23.

    Google Scholar 

  • Nasar, S. A. K. & S. Kaur, 1982. Observations on the abiotic factors and planktonic periodicity in a shallow pond of the highlands of Shillong (India). Acta. Hydrochim. Hydrobiol. 10: 167–175.

    Google Scholar 

  • Natarajan, A. V., 1983. Ecology and fisheries of fresh water reservoir Nagarjunasagar. Inland Fish. Res. Information Ser. 3: 66.

    Google Scholar 

  • Nauwerck, A., 1994. A survey on water chemistry and plankton in high mountain lakes in northern Swedish Lapland. Hydrobiologia 274: 91–100.

    Google Scholar 

  • Needham, J. G. & P. R. Needham, 1962. A Guide to the Study of Freshwater Biology, 5th edn. Holden-Day, Inc., San Francisco: 108 pp.

    Google Scholar 

  • Patil, C. S. & B. Y. M. Gouder, 1989. Freshwater Invertebrates of Dharwad, Karnataka State, India. Karnatak University Press, Dharwad: 144 pp.

    Google Scholar 

  • Pennak, R., 1957. Species composition of limnetic zooplankton communities. Limnol. Oceanogr. 2: 222–232.

    Google Scholar 

  • Prepas, E. E. & D. O. Trew, 1983. Evaluation of the phosphorus-chlorophyll relationship for lakes off the Precambrian shield in Western Canada. Can. J. Fish. aquat. Sci. 40: 27–35.

    Google Scholar 

  • Prescott, G.W., 1984. The Algae: A Review, B. Singh & M.P. Singh, India and Otto Koeltz, Science Publishers, W. Germany: 436 pp.

    Google Scholar 

  • Reddy, Y. R., 1994. Copepoda: Calanoida: Diaptomidae. Key to the genera Heliodiaptomus, Allodiaptomus, Neodiaptomus, Phyllodiaptomus, Eodiaptomus, Arctodiaptomus and Sinodiaptomus. SPB Academic, The Hague: 221 pp.

    Google Scholar 

  • Sahib, S. S. & P. K. Azis, 1989. Post impoundment water quality of the Kallada river-A preliminary report. Proc. Kerala Science Congress. Cochin: 153–160.

    Google Scholar 

  • Sehgal, K. L., 1983. Planktonic copepods of freshwater ecosystem. Environmental Science Series, Inteprint, New Delhi: 169 pp.

    Google Scholar 

  • Shortreed, K.S. & J.G. Stockner, 1986. Trophic satus of 19 subartic lakes in the Yukon Territory. Can J. Fish. Aquat. Sci. 43: 797–805.

    Google Scholar 

  • Sreenivasan, A., 1964a. A hydrological study of a tropical impoundment of Bhavanisagar reservoir, Madras state, India for the years 1956-1961. Hydrobiologia 24: 514–539.

    Google Scholar 

  • Sreenivasan, A., 1964b. Limnological studies and fish yield in three upland lakes of Madras State, India. Limnol. Ocenogr. 9: 564–574.

    Google Scholar 

  • Sreenivasan, A., 1968. The limnology and fish production in two ponds of Chenglepet (Madras). Hydrobiologia 38: 131–144.

    Google Scholar 

  • Sreenivasan, A., 1970. Limnology of tropical impoundments: a comparative study of the major reservoirs in Madras state (India). Hydrobiologia 36: 443–469.

    Google Scholar 

  • Strickland, J. D. & T. R. Parsons, 1968. A practical hand book of sea water analysis, Bull. Fish. Res. Bd., Canada 167: 185–206.

    Google Scholar 

  • Sugunan, V. V., 1997. Fisheries management of small water bodies in seven countries in Africa, Asia and Latin America. FAO Technical circular No. 933. Food and Agricultural Organization of the United Nations, Rome: 149 pp.

    Google Scholar 

  • Sumitra, V., 1971. Seasonal variation in primary productivity in three tropical ponds. Hydrobiologia 38: 395–408.

    Google Scholar 

  • Talling, J. F., 1992. Environmental regulation in African shallow lakes and wetlands. Rev. Hydrobiol. Trop. 25: 87–144.

    Google Scholar 

  • Thomas, S. & P. K. Azis, 1996. Spatial and temporal distribution of nutrients in the Peppara reservoir-A man made ecosystem on the Western Ghats, South India. Poll. Res. 15: 5–10.

    Google Scholar 

  • Trivedy, R. K. & P. K. Goel, 1986. Chemical and Biological Methods for Water Pollution Studies. Environmental Publications, Karad, India: 251 pp.

    Google Scholar 

  • Vollenwider, R. A., 1971. A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook. Blackwell Scientific Publications, Oxford: 213 pp.

    Google Scholar 

  • Vyhnalek, V., J. Fott & J. Kopacek, 1994. Chlorophyll-phosphorus relationship in acidified lakes of the High Tatra Mountains (Slovakia). Hydrobiologia 274: 171–177.

    Google Scholar 

  • Ward, H. B. & G. C. Whipple, 1959. Freshwater Biology, 2nd edn. W. T. Edmondson (eds), John Wiley, New York: 1248 pp.

    Google Scholar 

  • Welch, P. S., 1948. Limnological Methods. McGraw Hill Book Co., New York: 381 pp.

    Google Scholar 

  • Wen, Y. H., 1992. Contribution of bacterioplankton, phytoplankton, zooplankton and detritus to organic seston carbon load in a Changjiang floodplain lake (China). Arch. Hydrobiol. 126: 213–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugavel, P., Pandian, T.J. Effect of altitude on hydrology, productivity and species richness in Kodayar – a tropical peninsular Indian aquatic system. Hydrobiologia 430, 33–57 (2000). https://doi.org/10.1023/A:1004069013459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004069013459

Navigation