Skip to main content
Log in

Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, U.S.A.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l−1 and iron as high as 27 600 mg l−1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values <1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment – people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alpers, C. N. & D. K. Nordstrom, 1991. Geochemical evolution of extremely acid mine waters at Iron Mountain, California. Are there any lower limits to pH? Proc. 2nd Int. Conf. on Abatement of Acidic Drainage, Montreal, Québec, Canada 2: 321–342.

    Google Scholar 

  • Alpers, C. N., D. K. Nordstrom & J. M. Burchard, 1992. Compilation and interpretation of water-quality and discharge data for acidic mine waters at Iron Mountain, Shasta County, California, 1940-91. U.S. Geol. Surv.Water-Resources Inv. Rept. 91-4160: 173 pp.

  • Alpers, C. N., D. K. Nordstrom & J. M. Thompson, 1994. Seasonal variations of Zn/Cu ratios in acid mine water from Iron Mountain, California, Chapter 22. In Alpers, C. N. & D. W. Blowes (eds), Environmental Geochemistry of Sulfide Oxidation. Am. Chem. Soc. Symp. Ser. 550: 324-344.

  • Edwards, K. J., B. M. Goebel, T. M. Rodgers, M. O. Schrenk, T. M. Gihring, M. M. Cardona, Bo Hu, M. M. McGuire, R. J. Hamers, N. R. Pace & J. F. Banfield, 1999. Geomicrobiology of pyrite (FeS2) dissolution: Case study at Iron Mountain, California. Geomicrobiology 16: 155–179.

    Google Scholar 

  • Edwards, K. J., P. L. Bond, T. M. Girhring & J. F. Banfield, 2000. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287: 1796–1799.

    Google Scholar 

  • Ehrlich, H. L., 1963. Microorganisms in acid drainage from a copper mine. J. Bact. 86: 350–352.

    Google Scholar 

  • Ghiorse, W. C. & H. L. Ehrlich, 1992. Microbial biomineralization of iron and manganese. Catena Suppl. 21: 75–99.

    Google Scholar 

  • Green, J. & H. Kramadibrata, 1988. Note on Lake Goang, and unusual acid lake in Flores, Indonesia. Freshwat. Biol. 20: 195–198.

    Google Scholar 

  • Joseph, J. M., 1953. Microbiological study of acid mine waters-Preliminary report. Ohio J. Sci. 53: 123–127.

    Google Scholar 

  • Kinkel, A. R., Jr, W. E. Hall & J. P. Albers, 1956. Geology of basemetal deposits of the West Shasta copper-zinc district, Shasta County, California. U.S. Geol. Surv. Prof. Paper 285: 156 pp.

  • Klapper, H. & M. Schultze, 1995. Geogenically acidified mining lakes-living conditions and possibilities of restoration. Int. Rev. ges. Hydrobiol. 80: 639–653.

    Google Scholar 

  • Lackey, J. B., 1938. The flora and fauna of surface waters polluted by acid mine drainage. Publ. Health Rep. 53: 1499–1507.

    Google Scholar 

  • Nixdorf, B., K. Wollmann & R. Deneke, 1998. Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer, New York: 147–167.

    Google Scholar 

  • Nordstrom, D. K., 1991. Chemical modeling of acid mine waters in the western United States, in USGS Toxic Substances Hydrology Program, Meeting Proceedings, U.S. Geol. Surv. Water Res. Inv. Rep. 91-4034: 534-538.

  • Nordstrom, D. K., C. N. Alpers, C. J. Ptacek & D. W. Blowes, 2000. Negative pH and extremely acidic mine waters from Iron Mountain, California. Envir. Sci. Technol. 34: 254–258.

    Google Scholar 

  • Nordstrom, D. K. & C. N. Alpers, 1990, Geochemical evaluation of acid mine waters at Iron Mountain, Shasta County, California, 1990. U.S. Geological Survey Administrative Report to EPA, RDD/R63/025R.51: 32 pp.

  • Nordstrom, D. K. & C. N. Alpers, 1999a. Geochemistry of Acid Mine Waters. In Plumlee, G. S. & M. J. Logsdon (eds), The Environmental Geochemistry of Mineral Deposits. Part A. Processes, Methods and Health Issues. Soc. econ. Geol., Rev. Econ. Geol. 6(A): 133-160.

  • Nordstrom, D. K. & C. N. Alpers, 1999b. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. In Smith, J. V., P. R. Buseck & M. Ross (eds), Geology, Mineralogy and Human Welfare. Proc. natn. Acad. Sci. U.S.A., 96: 3455-3462.

  • Nordstrom, D. K., C. N. Alpers & J. W. Ball, 1991. Measurement of negative pH values and high metal concentrations in extremely acid mine waters from Iron Mountain, California. Geol. Soc. am., Abstracts with Programs, 23: A383.

    Google Scholar 

  • Nordstrom, D. K. & R. L. Potter, 1977. The interactions between acid mine waters and rhyolite. 2nd Int. Symp. on Water-Rock Interaction, Strasbourg, France: I15-26.

  • Nordstrom, D. K. & G. Southam, 1997. Geomicrobiology of sulfide mineral oxidation. In Banfield, J. F. & K. H. Nealson (eds), Geomicrobiology. Interactions Between Microbes and Minerals. Rev. Mineralog. 35: 361-390.

  • Pennak, R. W., 1978. Fresh-water Invertebrates of the United States, 2. Wiley, New York: 803 pp.

    Google Scholar 

  • Rodgers, T.M., 1996. Bacterial diversity in acid mine drainage from Iron Mt., Shasta County, California. A 16S ribosomal RNA approach. M.S. thesis, Dept. Geology and Geophysics, University of Wisconsin-Madison.

  • Rodgers, T. M., J. F. Banfield, C. N. Alpers & R. M. Goodman, 1996. Bacterial diversity in acid mine drainage from Iron Mountain, Shasta Co., California; a ribosomal DNA approach. Geol. Soc. am., Abstracts with Programs: 28: 35.

    Google Scholar 

  • Schrenk, M. O., K. J. Edwards, R. M. Goodman, F. J. Hamers & J. F. Banfield, 1998. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans. Implications for generation of acid mine drainage. Science 279: 1519–1522.

    Google Scholar 

  • Wood, W. W., 1976. Guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. U.S. Geological Survey Techniques of Water Resources Investigations, Book 1, Chapter D2: 24 pp.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbins, E.I., Rodgers, T.M., Alpers, C.N. et al. Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, U.S.A.. Hydrobiologia 433, 15–23 (2000). https://doi.org/10.1023/A:1004050216537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004050216537

Navigation