Skip to main content
Log in

Structural and genetic studies of the proliferation disrupter genes of Drosophila simulans and D. melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

To examine whether structural and functional differences exist in the proliferation disrupter (prod) genes between Drosophila simulans and D. melanogaster, we analyzed and compared both genes. The exon–intron structure of the genes was found to be the same – three exons were interrupted by two introns, although a previous report suggested that only one intron existed in D. melanogaster. The prod genes of D. simulans and D. melanogaster both turn out to encode 346 amino acids, not 301 as previously reported for D. melanogaster. The numbers of nucleotide substitutions in the prod genes was 0.0747 ±  per synonymous site and 0.0116 ± 0.0039 per replacement site, both comparable to those previously known for homologous genes between D. simulans and D. melanogaster. Genetic analysis demonstrated that D. simulans PROD can compensate for a deficiency of D. melanogaster PROD in hybrids. The PRODs of D. simulans and D. melanogaster presumably share the same function and a conserved working mechanism. The prod gene showed no significant interaction with the lethality of the male hybrid between these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Csink, A.K. & S. Henikoff, 1998. Something from nothing: the evolution and utility of satellite repeats. Trends Genetics 14: 200–204.

    Article  CAS  Google Scholar 

  • Hawkins, J.D., 1988. A survey on intron and exon lengths. Nucleic Acids Res. 16: 9893–9908.

    PubMed  CAS  Google Scholar 

  • Ina, Y., 1995. New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J. Mol. Evol. 40: 190–226.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, M., M.-T. Yamamoto & T.K. Watanabe, 1997. Molecular cloning of prod gene of Drosophila simulans. Genes Genet. Syst. 72: 391.

    Article  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama, E.N. & J.R. Powell, 1996. Intraspecific nuclear DNA variation in Drosophila. Mol. Biol. Evol. 13: 261–277.

    PubMed  CAS  Google Scholar 

  • Mount, S.M., 1982. A catalogue of splice junction sequences. Nucl. Acid Res. 10: 459–472.

    CAS  Google Scholar 

  • Orr, H.A., L.D. Madden, J.A. Coyne, R. Goodwin & R.S. Hawley, 1997. The developmental genetics of hybrid inviability: a mitotic defect in Drosophila hybrids. Genetics 145: 1031–1040.

    PubMed  CAS  Google Scholar 

  • Platero, J.S., A.K. Csink, A. Quintanilla & S. Henikoff, 1998. Changes in chromosomal localization of heterochromatin-binding proteins during the cell cycle in Drosophila. J. Cell Bio. 140: 1297–1306.

    Article  CAS  Google Scholar 

  • Sambrook, J., E.F. Frisch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanger, F., S. Nicklen & A.R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Sawamura, K., T.K. Watanabe & M.-T. Yamamoto, 1993. Hybrid lethal systems in the Drosophila melanogaster species complex. Genetica 88: 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, W., V.S. Rodriguez, B. Zhou & J. Parsch, 1994. Molecular evolution of the metallothionein gene Mtn in the melanogaster species group: Results from Drosophila ananassae. Genetics 138: 135–143.

    PubMed  CAS  Google Scholar 

  • Sturtevant, A.H., 1920. Genetic studies on Drosophila simulans. I. Introduction. Hybrids with Drosophila melanogaster. Genetics 5: 488–500.

    Google Scholar 

  • Seiler, T. & R. Nöthiger, 1974. Somatic cell genetics applied to species hybrids of Drosophila. Experimentia 30: 709.

    Article  Google Scholar 

  • Takano, T.S., 1998. Rate variation of DNA sequence evolution in the Drosophila lineages. Genetics 149: 959–970.

    PubMed  CAS  Google Scholar 

  • Török, T., G. Tick, M. Alvarado & I. Kiss, 1993. P-lac W insertional Mutagenesis on the second chromosome of Drosophila melanogaster: Isolation of lethals with different overgrowth phenotypes. Genetics 135: 71–80.

    PubMed  Google Scholar 

  • Török, T., P.D. Harvie, M. Buratovich & P. Bryant, 1997. The product of proliferation disrupter is concentrated at centromeres and required for mitotic chromosome condensation and cell proliferation in Drosophila. Genes & Development 11: 213–225.

    Google Scholar 

  • Watanabe, T.K., 1979. A gene rescues the lethal hybrids between Drosophila melanogaster and D. simulans. Jpn. J. Genet. 54: 325–331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, M., Yu, S., Watanabe, T.K. et al. Structural and genetic studies of the proliferation disrupter genes of Drosophila simulans and D. melanogaster. Genetica 106, 223–229 (1999). https://doi.org/10.1023/A:1003953518269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003953518269

Navigation