Skip to main content
Log in

Single‐chain 434 repressors with altered DNA‐binding specificities

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Combinatorial mutant libraries of the single-chain 434 repressor were used to discover novel DNA-binding specificities. Members of the library contain one wild type domain and one mutant domain which are connected by a recombinant peptide linker. The mutant domain contains randomized amino acids in place of the DNA-contacting residues. The single-chain derivatives are expected to recognize artificial operators containing the DNA sequence of ACAA — 6 base-pairs — NNNN, where ACAA is bound by the wild-type and NNNN by the mutant domain. An invivo library screening method was used to isolate mutant DNA-binding domains which recognize the TTAA site of an asymmetric operator. Several mutants showed high affinity binding to the selection target and also strong (up to 80 fold) preference for TTAA over the wild type TTGT sequence. Some of the isolated mutants bound with very high affinities (10–50 pM) to operators containing the TTAC sequence, a close homologue of the TTAA selection target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Greisman H.A. and Pabo C.O.: A general strategy for selecting high-affinity zinc finger proteins for diverse DNA sites, Science 275 (1997): 657–661.

    PubMed  Google Scholar 

  2. Kim J.-S. and Pabo C.O.: Getting a handhold on DNA: Design of poly-zinc finger proteins with femtomolar dissociation constants, Proc. Natl. Acad. Sci. USA 95 (1998): 2812–2817.

    PubMed  Google Scholar 

  3. Liu Q., Segal D.J., Ghiara J.B. and Barbas C.F. III: Design of polydactyl zinc-finger proteins for unique addressing within complex genomes, Proc. Natl. Acad. Sci. USA 94 (1997): 5525–5530.

    PubMed  Google Scholar 

  4. Choo Y., Castellanos A., Garcia-Hernandez B., Sanchez-Garcia I. and Klug A.: Promoter-specific activation of gene expression directed by bacteriophage-selected zinc fingers, J. Mol. Biol. 273 (1997): 525–532.

    PubMed  Google Scholar 

  5. Kim J.-S. and Pabo C.O.: Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy, J. Biol. Chem. 272 (1997): 29795–29800.

    PubMed  Google Scholar 

  6. Berg J.M.: Letting your fingers do the walking, Nature Biotech. 15 (1997): 323.

    Google Scholar 

  7. Choo Y. and Klug A.: Designing DNA-binding proteins on the surface of filamentous phage, Curr. Opin. Biotechnol. 6 (1995): 431–436.

    PubMed  Google Scholar 

  8. Rebar E.J., Greisman, H.A. and Pabo C.O.: Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities, Methods Enzymol. 267 (1996): 129–149.

    PubMed  Google Scholar 

  9. Berg J.M. and Shi Y.: Galvanization of biology: A growing appreciation for theroles of zinc, Science 271 (1996): 1081–1085.

    PubMed  Google Scholar 

  10. Rhodes D., Schwabe J.W.R., Chapman L. and Fairall L.: Towards understanding of protein-DNA recognition, Phil. Trans. R. Soc. Lond. B. 351 (1996): 501–509.

    Google Scholar 

  11. Harrison S.C. and Aggarwal A.K.: DNA recognition by proteins with the helix-turn-helix motif, Annu. Rev. Biochem. 59 (1990): 933–969.

    PubMed  Google Scholar 

  12. Simoncsits A., Chen J., Percipalle P., Wang S., Törö I. and Pongor S.: Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators, J. Mol. Biol. 267 (1997): 118–131.

    PubMed  Google Scholar 

  13. Percipalle P., Simoncsits A., Zakhariev S., Guarnaccia C., Sanchez, R. and Pongor, S.: Rationally designed helix-turnhelix proteins and their conformational changes upon DNA binding, EMBO J. 14 (1995): 3200–3205.

    PubMed  Google Scholar 

  14. Chen J., Pongor S. and Simoncsits A.: Recognition of DNA by single-chain derivatives of the phage 434 repressor: High affinity binding depends on both the contacted and noncontacted base pairs, Nucleic Acids Res. 25 (1997): 2047–2054.

    PubMed  Google Scholar 

  15. Wharton R.P. and Ptashne M.: Changing the binding specificity of a repressor by redesigning an α-helix, Nature 316 (1985): 601–605.

    PubMed  Google Scholar 

  16. Wharton R. P. and Ptashne M.: A new specificity mutant of 434 repressor that defines an amino acid-base pair contact, Nature 326 (1987): 888–891.

    PubMed  Google Scholar 

  17. Huang L., Sera T. and Schultz P.G.: A permutational approach toward protein-DNA recognition, Proc. Natl. Acad. Sci. USA, 91 (1994): 3969–3973.

    PubMed  Google Scholar 

  18. Aggarwal A.K., Rodger D.W., Drottar M., Ptashne M. and Harrison S.C.: Recognition of DNA operator by the repressor of phage 434: A view at high resolution, Science 242 (1988): 899–907.

    PubMed  Google Scholar 

  19. Choo Y. and Klug A.: Toward a code for interaction of zinc fingers with DNA: Selection of randomized fingers displayed on phage, Proc. Natl. Acad. Sci. USA 91 (1994): 11163–11167.

    PubMed  Google Scholar 

  20. Choo Y. and Klug A.: Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions, Proc. Natl. Acad. Sci. USA 91 (1994): 11168–11172.

    PubMed  Google Scholar 

  21. Seeman N.C., Rosenberg M.J. and Rich A.: Sequence-specific recognition of double helical nucleic acids by proteins, Proc. Natl. Acad. Sci. USA 73 (1976): 804–808.

    PubMed  Google Scholar 

  22. Pabo C.O. and Sauer R.T.: Transcription factors: Structural families and principles of DNA recognition, Annu. Rev. Biochem. 61 (1992): 1053–1095.

    PubMed  Google Scholar 

  23. Suzuki M.: A framework for the DNA-protein recognition code of the probe helix in transcription factors: The chemical and stereochemical rules, Structure 2 (1994): 317–326.

    PubMed  Google Scholar 

  24. Mandel-Gutfreund Y., Schueler O. and Margalit H.: Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: In search of common principles, J. Mol. Biol. 253 (1995): 370–382.

    PubMed  Google Scholar 

  25. Shimon L.J. and Harrison S.C.: The phage 434 OR2/R1–69 complex at 2.5 A resolution, J. Mol. Biol. 232 (1993): 826–838.

    PubMed  Google Scholar 

  26. Rodgers D.W. and Harrison S.C.: The complex between phage 434 repressor DNA-binding domain and operator site OR3: Structural differences between consensus and non-consensus half-sites, Structure 1 (1993): 227–240.

    PubMed  Google Scholar 

  27. Miller J.H.: Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1972.

    Google Scholar 

  28. Gill S.C. and von Hippel P.H.: Calculation of protein extinction coefficients from amino acid sequence data, Anal. Biochem. 182 (1989): 319–326.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simoncsits, A., Tjörnhammar, M., Wang, S. et al. Single‐chain 434 repressors with altered DNA‐binding specificities. Genetica 106, 85–92 (1999). https://doi.org/10.1023/A:1003728911906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003728911906

Navigation