Skip to main content
Log in

Genetic basis of variation for salt tolerance in maize ( Zea mays L).

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The genetic basis of salt tolerance was examined in selected salt tolerant and sensitive material from a sample of accessions previously assessed for variability in salinity tolerance. The North Carolina Model 2 Design and analysis was followed, tolerance being assessed in 10-day-old seedlings grown in salinized solution culture at control (0 mM), 60 mM and 80 mM NaCl concentrations). Salinity tolerance was shown to be under the control of genes with additive and non-additive effects, with broad and narrow sense heritability estimates being approximately 0.7 and 0.4 over all treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abel, G.M., 1969. Inheritance of the capacity for chloride inclusion and chloride exclusion by soybean. Crop Sci 9: 697–698.

    Article  Google Scholar 

  • Ahsan, M., D. Wright & D. Vrik, 1996. Genetic analysis of salt tolerance in spring wheat (Triticum aestivum L.). Cereal Research Communication 24(3): 353–360.

    Google Scholar 

  • Akbar, M. & T. Yabuno, 1977. Breeding saline resistance varieties of rice. IV. Inheritance of delayed type panicle sterility induced by salinity. Japan J Breed 27: 237–240.

    Google Scholar 

  • Al-Khatib, M., T. McNeilly & J.C. Collins, 1993. The potential for selection and breeding for improved salt tolerance in lucerne (Medicago sativa L.). Euphytica 65: 43–51.

    Article  Google Scholar 

  • Al-Khatib, M., T. McNeilly & J.C. Collins, 1994. The genetic basis of salt tolerance in Lucerne (Medicago sativa L.). J Genet & Breed 48: 169–174.

    Google Scholar 

  • Ashraf, M. & T. McNeilly, 1989. Effect of salinity on some cultivars of maize. Maydica 34: 179–189.

    Google Scholar 

  • Ashraf, M. & T. McNeilly, 1990. Improvement of salt tolerance in maize by selection and breeding. Plant Breed 104(2): 101–107.

    Article  Google Scholar 

  • Ashraf, M., T. McNeilly & A.D. Bradshaw, 1986. The potential for evolution of salt tolerance in seven grass species. New Phytol 103: 299–309.

    Article  CAS  Google Scholar 

  • Azhar, F.M. & T. McNeilly, 1988. The genetic basis of variation for salt tolerance in Sorghum bicolor (L.) Moench, seedlings. Plant Breed 101: 114–121.

    Article  CAS  Google Scholar 

  • Azhar, F.M. & T. McNeilly, 1989. The response of four sorghum accessions/cultivars to salinity during whole plant development. J Agron and Crop Sci 163: 33–43.

    Article  Google Scholar 

  • Becker, W.A., 1992. Manual of Quantitative Genetics. 5th ed. Academic Enterprises, Pullman, WA.

    Google Scholar 

  • Bernstein, L. & H.E. Hayward, 1958. Physiology of salt tolerance. Ann Rev Plant Physiol 9: 25–46.

    Article  CAS  Google Scholar 

  • Blum, A., 1988. Plant breeding for stress environment. CRC Pres Inc Boca Raton, Florida.

    Google Scholar 

  • Comstock, R.E. & H.F. Robinson, 1952. Estimation of average dominance of genes. Heterosis, Ch 30 Iowa State College Press.

  • Dewey, D.R., 1960. Salt tolerance of twenty five strains of Agropyron. Agron J 52: 631–635.

    Article  Google Scholar 

  • Epstein, E. & J.D. Norly, 1977. Sea-water based crop production: A feasibility study. Science 197: 249–251.

    PubMed  CAS  Google Scholar 

  • Epstein, E., J. D. Norlyn, D.W. Rush, R.W. Kingsbury, D.W. Kelley, G.A. Cunningham & A.F. Wrona, 1980. Saline culture of crops: A genetic approach. Science 210: 399–404.

    CAS  PubMed  Google Scholar 

  • Falconer, D.S. & T.F.C. MacKay, 1996. Introduction to quantitative genetics. Chapman and Hall, London.

    Google Scholar 

  • Gregorio, G.B. & D. Senadhira, 1993. Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 86: 333–338.

    Article  Google Scholar 

  • Hewitt, E.J., 1966. Sand and water culture methods used in the study of plant nutrition. Commonwealth Agriculture Bureaux. Technical Communication. No. 22.

  • Hoffman, A.A. & P.A. Parsons, 1991. Evolutionary Genetics and Environmental Stress. Oxford Uni Press, New York.

    Google Scholar 

  • Jinks, J.L., J.M. Perkins & H.S. Pooni, 1973. The incidence of epistasis in normal and extreme environments. Heredity 31: 263–269.

    Google Scholar 

  • Kacser, H. & J.A. Burns, 1981. The molecular basis of dominance. Genetics 97: 639–666.

    PubMed  CAS  Google Scholar 

  • Kebebew, F., 1994. The potential for improving salt tolerance in minor millets, Pennisetum americanum (L.) Leeke (Pearl Millet) and Eleusine coracana (L.) Gaertn. (Finger Millet), and Eragrostis tef (Zucc.) Trotter (Tef). PhD Thesis University of Liverpool.

  • Kebebew, F. & T. McNeilly, 1996. The genetic basis of variation in salt tolerance in Pearl Millet, Pennisetum americanum (L.) Leeke. J Genet and Breed 50: 129–136.

    Google Scholar 

  • Lawrence, M.J., 1984. The genetical analysis of ecological traits. In: B. Shorrocks (Ed), Evolutionarity ecology, Blackwell Sci Publ Oxford, London, Edinburgh, pp. 27–63.

    Google Scholar 

  • Maiti, R.K., L.E.D. Amaya, S.I. Cardona, A.M.O. Dimas, M. Dela Rosa-Ibarra & H.D.L. Castillo, 1996. Genotype variability in maize cultivars (Zea mays) for resistance to drought and salinity. J Plant Physiol 148: 741–744.

    CAS  Google Scholar 

  • Mather, K., 1973. Genetic structure of populations. Chapman and Hall, London.

    Google Scholar 

  • Mather, K. & J.L. Jinks, 1971. Biometrical genetics. The study of continuous variation. Chapman and Hall, London.

    Google Scholar 

  • Moeljopawiro, S. & H. Ikehashi, 1981. Inheritance of salt tolerance in rice. Euphytica 30: 291–300.

    Article  Google Scholar 

  • Noble, C.L., G.M. Halloran & D.W. West, 1984. Identification and selection for salt tolerance in Lucerne (Medicago sativa L.). Aust J Agri Res 35: 239–252.

    Article  Google Scholar 

  • Rao, S.A., 1997. The potential for breeding Zea mays L. for saline conditions. PhD Thesis. The University of Liverpool, U.K.

    Google Scholar 

  • Richards, R.A., 1978. Genetic analysis of drought stress response in rape seed (Brassica compestris and B. napus). I. Assessment of environments for maximum selection response in grain yield. Euphytica 27: 609–615.

    Article  Google Scholar 

  • Rumbaugh, M.D., K.H. Asay & D.A. Johnson, 1984. Influence of drought stress on genetic variance of alfalfa and wheat grass seedling. Crop Sci 24: 297–303.

    Article  Google Scholar 

  • Shannon, M.C., 1984. Breeding, selection, and the genetics of salt tolerance. In: R.C. Staples & G.H. Toenniessen (Eds), Salinity Tolerance in Plants-Strategies for Crop Improvement, pp. 231–254. Wiley-Interscience Publication, New York, Chichester, Brisbane, Toronto, Singapore.

    Google Scholar 

  • Shannon, M.C., 1985. Principles and strategies in breeding for salt tolerance. Plant and Soil 89: 227–281.

    Article  Google Scholar 

  • SPSS, 1994. Repeated Measure Analysis of Variance, pp. 107–143. In SPSS Advance Statistics. Release 6.1.

  • Tal, M., 1985. Genetics of salt tolerance in higher plants: Theoretical and practical considerations. Plant and Soil 89: 199–226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, S.A., McNeilly, T. Genetic basis of variation for salt tolerance in maize ( Zea mays L).. Euphytica 108, 145–150 (1999). https://doi.org/10.1023/A:1003612411293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003612411293

Navigation