Skip to main content
Log in

A method for measuring depth-integrated community metabolism in experimental planktonic–benthic ecosystems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We developed incubation chambers of clear acrylic extending the full depth of the water column to measure in situ depth-integrated community metabolism in experimental planktonic–benthic ecosystems. A magnetic stirring apparatus at mid-depth in each chamber prevented stratification and maintained a vertical turnover time that roughly matched turnover in the experimental ecosystems. We used the chambers in light–dark experiments to partition the depth-integrated photosynthesis and respiration occurring in the experimental ecosystems among water column, wall periphyton, and benthic communities. Community metabolism measured with the chambers was positively related to the chlorophyll-a concentrations of the water column and wall periphyton communities. We also found close agreement between the summation of partitioned community metabolism measured in the chambers and an independent measure of total ecosystem metabolism in the experimental ecosystems. Incubations in chambers and in light–dark bottles revealed similar patterns of water column and wall periphyton community metabolism, but magnitudes differed. In addition to application in experimental ecosystems, this incubation chamber technique may provide an efficient and realistic measure of water column and benthic metabolism and nutrient uptake in lakes and estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carritt, D. E. & J. H. Carpenter, 1966. Comparison and evaluation of currently employed modifications of the Winkler method for determining dissolved oxygen in seawater; a NASCO report. J. Mar. Res. 24: 286-318.

    Google Scholar 

  • Chen, C.-C., J. E. Petersen & W. M. Kemp, 1997. Spatial and temporal scaling of periphyton growth on walls of estuarine mesocosms. Mar. Ecol. Prog. Ser. 155: 1-15.

    Google Scholar 

  • Confer, J. L., 1972. Interrelations among plankton, attached algae and phosphorous cycle in artificial open systems. Ecol. Monogr. 19: 1-23.

    Google Scholar 

  • Doty, M. S. & M. Oguri, 1958. Selected features of the isotopic carbon primary productivity technique. Rapport et Proces-Verbaux des Reunions. Conseil Permanent International pour l'Exploration de la Mer 144: 47-55.

    Google Scholar 

  • Eppley, R. W., P. Koeller & G. T. J. Wallace, 1978. Stirring in-fluences the phytoplankton species composition within enclosed columns of coastal sea water. J. Exp. Mar. Biol. Ecol. 32: 219-239.

    Google Scholar 

  • Falkowski, P. G., 1980. Light-shade adaptation in marine phytoplankton. In P. G. Falkowski (ed.), Primary Productivity in the Sea. Plenum, New York: 99-120.

    Google Scholar 

  • Gaarder, T. & H. H. Grann, 1927. Investigations of the production of plankton in the Oslo Fjord. Rapport et Proces-Verbaux des Reunions. Conseil Permanent International pour l'Exploration de la Mer 42: 3-31.

    Google Scholar 

  • Jewson, D. H. & R. B. Wood, 1975. Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh. int. Ver. Limnol. 19: 1037-1044.

    Google Scholar 

  • Madden, C. J. & J. W. Day, 1992. Induced turbulence in rotating bottles affects phytoplankton productivity measurements in turbid waters. J. Plankton Res. 14: 1171-1191.

    Google Scholar 

  • Petersen, J.E., J. Cornwell & W. M. Kemp, 1999. Implicit scaling in the design of experimental ecosystems. Oikos 85: 3-18.

    Google Scholar 

  • Petersen, J.E., L.P. Sanford, & W.M. Kemp, 1998. Coastal plankton responses to turbulent mixing in experimental ecosystems. Mar. Ecol. Prog. Ser. 171: 23-41.

    Google Scholar 

  • Petersen, J. E., C.-C. Chen & W. M. Kemp, 1997. Spatial scaling of aquatic primary productivity: experiments under nutrient and light-limited conditions. Ecology 78: 2326-2338.

    Google Scholar 

  • Rees, J. T., 1979. Community development in freshwater microcosms. Hydrobiologia 63: 113-128.

    Google Scholar 

  • Smetacek, V., B. con Bodungen, B. Knoppers, H. Neubert, F. Pollehne & B. Zeitschel, 1980. Shipboard experiments on the effect of vertical mixing on natural plankton populations in the central Baltic Sea. Ophelia 1 (suppl.): 77-98.

    Google Scholar 

  • Taylor, D., S. Nixon, S. Granger & B. Buckley, 1995. Nutrient limitation and the eutrophication of coastal lagoons. Mar. Ecol. Prog. Ser. 127: 235-244.

    Google Scholar 

  • Thomas, E. A., 1958. Das Plankton-Test-Lot, ein Gerat zum Studium des Verhaltens von Planktonorganismen im See. Monatsbulletin des Schweizeriches Vereins von Gas-und Wasserfach mannern 1: 3-8.

    Google Scholar 

  • Van Heukelem, L., A. J. Lewitus, T. M. Kana & N. E. Craft, 1994. Improved separations of phytoplankton pigments using temperature-controlled high performance liquid chromatography. Mar. Ecol. Prog. Ser. 86: 451-261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, J.E., Chen, CC. A method for measuring depth-integrated community metabolism in experimental planktonic–benthic ecosystems. Hydrobiologia 391, 23–31 (1998). https://doi.org/10.1023/A:1003507815790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003507815790

Navigation