Skip to main content
Log in

Seasonal and spatial distribution of bacterial production and biomass along a salinity gradient (Northern Adriatic Sea)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Adriatic Sea is a semi-enclosed ecosystem that receives in itsshallow part, the northern basin, significant freshwater inputs whichmarkedly increase its productivity with respect to the oligotrophic featuresof the Mediterranean sea. In this area, especially on the western coastwhere river plumes diffuse, high physical (density) and chemical (nutrients)gradients occur on a small scale, both horizontal and vertical. Results ofbacterial production as 3H-thymidine incorporation, bacterialabundance as DAPI direct count, autotrophic biomass as chlorophyll a andtotal biomass as ATP from three areas in the Northern Adriatic Sea arereported. The three sites, differently influenced by the river waterdiffusion, were sampled seasonally over two days, every 24 h, in foursurveys from April 1995 to January 1996. Bacterioplankton production,strongly correlated with primary production, was extremely high near thecoast in low-salinity, high-nutrient waters, mostly as an indirectconsequence of riverine inputs causing an increase in phytoplanktonproduction stimulated by physically driven nutrient inputs. In the warmmonths bacterial activity was higher than in cold months. While bacteriaabundance did not appear related to the salinity gradients, bacterialproduction (from 0.6 to 372 pM 3H-thymidine h™1incorporated, corresponding to 0.01–8.2 µg C l™1h™1) and the relative generation times (from 0.2 to 35 days)showed a high range of values, representing a variety of situations, fromestuaries to the ocean. The resulting role of the bacterial community in thecarbon cycle is very consistent, processing amounts of carbon which havebeen estimated as high as the 80% and the 260% of thosesynthesized by autotrophs in summer and winter, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • APHA, WWA, PCF, 1989. Standard methods for the examination of water and wastewater. In L. J. Clesceri, A. E Greenberg & R. R. Trussel (eds), American Public Health Association, Washington DC 17.

    Google Scholar 

  • Artegiani, A., D. Bregant, E. Paschini, N. Pinardi, F. Raicich & A. Russo, 1996. The Adriatic Sea general circulation. Part II: baroclinic circulation structure. J. Phys. Oceanogr., in press.

  • Azam, F., D. C. Smith, G. F. Steward & A. Hagström, 1993. Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb. Ecol. 28: 167–179.

    Article  Google Scholar 

  • Bell, R. T., 1990. An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of 3Hthymidine. Limnol. Oceanogr. 35: 910–915.

    CAS  Google Scholar 

  • Biddanda, B., S. Opsahl & R. Benner, 1994. Plankton respiration and carbon flux through bacterioplankton on the Luisiana shelf. Limnol. Oceanogr. 39: 1259–1275.

    Article  CAS  Google Scholar 

  • Chin-Leo, G. & R. Benner, 1992. Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Ecol. Prog. Ser. 87: 87–103.

    Article  Google Scholar 

  • Cho, B.C. & F. Azam, 1990. Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar. Ecol. Prog. Ser. 63: 253–259.

    CAS  Google Scholar 

  • Degobbis, D. & M. Gilmartin, 1990. Nitrogen, phosphorus and biogenic silicon budgets for the northern Adriatic Sea, Oceanol. Acta 13: 31–45.

    CAS  Google Scholar 

  • Ducklow, H. W., 1982. Chesapeake Bay nutrient and plankton dynamics. 1. Bacterial biomass and production during tidal destratification in the York River, Virginia, estuary. Limnol. Oceanogr. 27: 651–659.

    CAS  Google Scholar 

  • Ducklow, H. W. & C. A. Carlson, 1992. Oceanic bacterial production. In K.C. Marshall (ed.), Advances in Microbial Ecology, Plenum Press, New York, 12: 113–181.

    Google Scholar 

  • Ducklow, H. W. & F. K. Shiah, 1993. Bacterial production in estuaries. In T. E. Ford (ed.), Aquatic Microbiology: An Ecological Approach. Blackwell, Oxford 11: 261–287.

    Google Scholar 

  • Faganeli, J., M. Gacic, A. Malej & N. Smodlaka, 1989. Pelagic organic matter in the Adriatic sea in relation to winter hydrographic conditions. J. Plankton Res. 11: 1129–1141.

    CAS  Google Scholar 

  • Franco, P., 1967. Condizioni idrologiche e produttività primaria nel Golfo di Venezia. Arch. Oceanogr. Limnol. 15: 69–83.

    Google Scholar 

  • Fuhrman, J. A., J.W. Ammerman & F. Azam, 1980. Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.

    Article  Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.

    Article  Google Scholar 

  • Gilmartin, M. & N. Revelante, 1983. The phytoplankton of the Adriatic sea: standing crop and primary production. Thalassia jugosl. 19: 173–188.

    Google Scholar 

  • Gonzales, J.M., E. B. Sherr, B. F. Sherr, 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. envir. Microbiol. 56: 583–589.

    Google Scholar 

  • Hagström A., F. Azam, A. Andersson, J. Wikner & F. Rassoulzadegan, 1988. Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar. Ecol. Prog. Ser. 49: 171–178.

    Google Scholar 

  • Heip, C. H. R., N. K. Goosen, P. M. J. Herman, J. Kromkamp, J. J. Middelburg & K. Soetaert, 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Ann. Rev. 33: 1–149.

    Google Scholar 

  • Herndl, G. J., M. Karner & P. Peduzzi, 1992. Floating mucilage in the Northern Adriatic Sea: the potential of a microbial ecological approach to solve the mystery. Sci. Total Envir. Suppl.: 525–538.

  • Holligan, P.M., R. P. Harris, R. C. Newell, D. S. Harbour, R.N. Head, E. A. S. Linley, M. I. Lucas, P. R. G. Tranter & C. M. Weekley, 1984. Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Mar. Ecol. Prog. Ser. 14: 111–127.

    CAS  Google Scholar 

  • Iriberri, J., B. Ayo, M. Unanue, I. Barcina & L. Egea, 1993. Channeling of bacterioplankton production toward phagotrophic flagellates and ciliates under different seasonal conditions in a river. Microb. Ecol. 26: 111–124.

    Article  Google Scholar 

  • Jacq, E. & D. Prieur, 1986. Les associations bactéries-matière particulaire en milieu pélagique cotier: exemples de variations spatiales et temporelles. GERBAM II Colloque Int. de Bactériologie marine–CNRS, Brest 1–5 Octobre 1984–IFREMER, Actes de Colloques 3: 229–236.

    Google Scholar 

  • Jahnke, R. A. & D. B. Craven, 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: a need for respiration rate measurements. Limnol. Oceanogr. 40: 436–441.

    Article  CAS  Google Scholar 

  • Jakubczak, E. & H. Leclerc, 1980. Mesure de l’ATP bactérien par bioluminescence: étude critique des méthodes d’extraction. Ann. Biol. Clin. 38: 297–304.

    CAS  Google Scholar 

  • Karl, D. M, 1980. Cellular Nucleotide Measurements and Applications in Microbial Ecology. Microbiol. Rev. 44: 739–796.

    PubMed  CAS  Google Scholar 

  • Karner, M., D. Fuks & G. J. Herndl, 1992. Bacterial activity along a trophic gradient. Microb. Ecol. 24: 243–257.

    Article  Google Scholar 

  • Kirchman, D., Y. Soto, F. Van Wambeck & M. Bianchi, 1989. Bacterial production in the Rhone River plume: effect of mixing on relationships among microbial assemblages. Mar. Ecol. Prog. Ser. 53: 267–275.

    Google Scholar 

  • Krstulovic, N., 1992. Bacterial biomass and production rates in the central Adriatic. Acta Adriat. 33: 49–65.

    Google Scholar 

  • Krstulovic, N., T. Pucher-Petkovic & M. Solic, 1995. The relation between bacterioplankton and phytoplankton production in the mid Adriatic Sea. Aquat. Microb. Ecol. 9: 41–45.

    Google Scholar 

  • Krstulovic, N. & S. Sobot, 1982. Proportion of bacteria in total plankton of the central Adriatic. Acta Adriat. 23: 47–52.

    Google Scholar 

  • Kveder, S. & S. Keckes, 1969. Hydrographic and biotical conditions in North Adriatic.V. Primary phytoplankton productivity. Thalassia jugosl. 5: 185–191.

    Google Scholar 

  • Kveder, S., N. Revelante, N. Smodlaka & A. Skrivancic, 1971. Some characterstics of phytoplankton and phytoplankton productivity in the Northern Adriatic. Thalassia jugosl. 7: 151–158.

    Google Scholar 

  • Lee, S. & J. A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. envir. Microbiol. 53: 1298–1303.

    CAS  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Revelante, N. & M. Gilmartin, 1976. The effect of Po river discharge on phytoplankton dynamics in the northern Adriatic sea. Mar. Biol. 34: 259–271.

    Article  CAS  Google Scholar 

  • Revelante, N. & M. Gilmartin, 1992. The lateral advection of particulate organic matter from the Po delta region during summer stratification, and its implications for the Northern Adriatic. Estuar. coast. Shelf Sci. 35: 191–212.

    CAS  Google Scholar 

  • Revelante, N. & M. Gilmartin, 1995. The relative increase of larger phytoplankton in a subsurface chlorophyll maximum of the northern Adriatic Sea. J. Plankton Res. 17: 1535–1562.

    CAS  Google Scholar 

  • Riemann, B., P. K. Bjornsen, S. Newell & R. Fallon, 1987. Calculation of cell production of coastal marine bacteria based on measured incorporation of 3H-thymidine. Limnol. Oceanogr. 32: 471–476.

    Article  CAS  Google Scholar 

  • Shiah, F. K. & H. W. Ducklow, 1995. Regulation of bacterial abundance and production by substrate supply and bacterivory: a mesocosm study. Microb. Ecol. 30: 239–255.

    Article  CAS  Google Scholar 

  • Solic, M. & N. Krstulovic, 1994. Role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. Mar. Ecol. Prog. Ser. 114: 219–235.

    Google Scholar 

  • Unanue, M., B. Ayo, I. Azùa, I. Barcina & J. Iriberri, 1992. Temporal variability of attached and free-living bacteria in coastal waters. Microb. Ecol. 23: 27–39.

    Article  Google Scholar 

  • Vives-Rego, J., J. Martinez & J. Garcia-Lara, 1988. Assessment of bacterial production and mortality in Mediterranean coastal water. Estuar. Coast. Shelf Sci. 26: 331–336.

    Article  Google Scholar 

  • Zoppini, A., 1990. Adenosintrifosfato cellulare (ATP). In S.I.B.M., Metodi nell’Ecologia del Plancton Marino. Nova Thalassia 11: 225–230.

    Google Scholar 

  • Zoppini, A., M. Pettine, C. Totti, A. Puddu, A. Artegiani & R. Pagnotta, 1995. Nutrients, standing crop and primary production in western coastal waters of the Adriatic Sea. Estuar. Coast. Shelf Sci. 41: 493–513.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puddu, A., La Ferla, R., Allegra, A. et al. Seasonal and spatial distribution of bacterial production and biomass along a salinity gradient (Northern Adriatic Sea). Hydrobiologia 363, 271–282 (1997). https://doi.org/10.1023/A:1003169620843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003169620843

Navigation