Skip to main content
Log in

Physical, chemical and biological dynamics of five temporary dystrophic forest pools in Central Mississippi

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Five temporary forest pools at Noxubee National WildlifeRefuge,Noxubee Co., Mississippi were surveyed monthly for three yearstogain a better understanding of the dynamics of temporaryaquatichabitats. The objective of this study was to characterize thephysicochemical and biological changes in temporary pools inorderto assess the temporal habitat diversity. These ecosystems,allwithin no more than 4 km of one another, were heterotrophicwith adetrital-based food web derived from allochthonous leaflitter.These pools were chosen because of their close proximity tooneanother, they historically filled and dried seasonally, andtheywere known breeding sites for resident amphibian populations.Only47% of the amphibian cohorts inhabiting the pools appeared tothrive and metamorphose prior to pool desiccation. Successfuldevelopment and dispersal of larvae was variable among poolsandyears. We found that the filling cycles differed amonghabitats andthat physiochemical and biological parameters were highlyvariable.Our data suggest that ephemeral pools in this central piedmontregion of Mississippi are each unique and represent habitatsof lowpredictability for amphibian breeding and success. We concludethatit is erroneous to draw generalizations regarding a ‘typical’temporary pool ecosystem within this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, 1981. Standard Methods for the Examination of Water and Wastewater. 15th edn. Am. Publ. Health Ass., Inc. NY.

    Google Scholar 

  • Barclay, M. H., 1966. An ecological study of a temporary pond Aukland, New Zealand. Aust. J. mar. Freshwat. Res. 17: 239–258.

    Google Scholar 

  • Baldauf, R. F., 1952. Climatic factors influencing the breeding migration of the spotted salamander, Ambystoma maculatum (Shaw). Copeia 1952: 178–181.

    Google Scholar 

  • Barlocher, F., R. J. Mackay & G. B Wiggins, 1978. Detritus processing in a temporary vernal pool in southern Ontario. Arch. Hydrobiol. 81: 269–295.

    Google Scholar 

  • Belk, D., 1994. A report on the status of Anostraca in France from Alain Thiery. Anostracan News 2: 2.

    Google Scholar 

  • Belk, D & G. A. Cole, 1975. Adaptational biology of desert temporary pond inhabitants. In Hadley, N. F. (ed.). Environmental Physiology of Desert Organisms. Dowden, Hutchinson & Ross, Stroudburg: 207–226.

    Google Scholar 

  • Bishop, J. A., 1974. The fauna of temporary rain pools in eastern New South Wales. Hydrobiologia 44: 319–323.

    Google Scholar 

  • Black, J. H., 1976. Environmental fluctuations in central Oklahoma temporary ponds. Proc. Oklahoma Acad. Sci. 56: 1–8.

    Google Scholar 

  • Branch, L. C. & R. Altig, 1981. Nocturnal stratification of three species of Ambystomalarvae. Copeia 1981: 873–879.

    Google Scholar 

  • Branch, L. C. & R. Altig, 1983. Survival and behavior of four species of Ambystomalarvae under hypoxic conditions. Comp. Biochem. Physiol. 74A: 395–397.

    Google Scholar 

  • Briand, F. & J. E. Cohen, 1987. Environmental correlates of food chain length. Science 238: 956–960.

    Google Scholar 

  • Cole, J. & S. G. Fisher, 1978. Annual metabolism of a temporary pond ecosystem. Am. Midl. Nat. 100: 15–22.

    Google Scholar 

  • Daborn, G. R. & H. F. Clifford, 1974. Physical and chemical features of an aestival pond in western Canada. Hydrobiologia 44: 43–59.

    Google Scholar 

  • Dale, J. M., B. Freedman & J. Kerekes, 1985. Acidity and associated water chemistry of amphibian habitats in Nova Scotia. Can. J. Zool. 63: 97–105.

    Google Scholar 

  • Dempster, W. T., 1930. The growth of larvae of Ambystoma maculatum under natural conditions. Biol. Bull. 58: 182–192.

    Google Scholar 

  • Erikson, C. H., 1966. Diurnal limnology of two highly turbid puddles. Verh. int. Ver. Limnol. 16: 507–514.

    Google Scholar 

  • Felton, M., J. J. Cooney & W. G. Moore, 1967. A quantitative study of the bacteria of a temporary pond. J. Gen. Microbiol. 47: 25–31.

    Google Scholar 

  • Grainger, J. N. R., 1994. The status of Anostraca and Notostraca in Great Britain and Ireland. Anostracan News 2: 3.

    Google Scholar 

  • Hartland-Rowe, R., 1966. The fauna and ecology of temporary pools in western Canada. Verh. int. Ver. Limnol. 16: 577–584.

    Google Scholar 

  • Hutchinson, G. E., 1957. A Treatise on Limnology. Vol. I. John Wiley & Sons, NY.

    Google Scholar 

  • King, J. L., M. A. Simovich & R. C. Brusca, 1996. Endemism, species richness, and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328: 85–116.

    Google Scholar 

  • Lind, O. T., 1974. Handbook of Common Methods in Limnology. C.V. Mosby Co., St. Louis, MO.

    Google Scholar 

  • Ling, R.W., J. P VanAmberg & J. K Werner, 1986. Pond acidity and its relationship to larval development of Ambystoma maculatum and Rana sylvaticain upper Michigan. J. Herpitol. 20: 230–236.

    Google Scholar 

  • Martof, B. S., 1960. Autumnal breeding of Hyla crucifer. Copeia 1960: 58–59.

    Google Scholar 

  • Modlin, R. F., 1980. The physicochemical limnology of a temporary pond in North Alabama. Alabama Acad. Sci. 51: 119–130.

    Google Scholar 

  • Moore, W. G., 1970. Limnological studies of temporary ponds in southern Louisiana. Southwestern Nat. 15: 83–110.

    Google Scholar 

  • Moore, W. G. & A. Burn, 1968. Lethal oxygen thresholds for certain temporary pond invertebrates and their applicability to field situations. Ecology 49: 349–351.

    Google Scholar 

  • Morton, D. W. & I. A. E. Bayly, 1977. Studies on the ecology of some temporary freshwater pools in Victoria, Australia with specific reference of microcrustaceans. Aust. J. Freshwat. Res. 28: 439–454.

    Google Scholar 

  • Mozley, A., 1932. A biological study of a temporary pond in western Canada. Am. Nat. 66: 235–249.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, NY.

    Google Scholar 

  • Pennak, R. W., 1978. Freshwater invertebrates of the United States. John Wiley and Sons, New York.

    Google Scholar 

  • Pough, F. H., 1976. Acid precipitation and embryonic mortality of the spotted salamander, Ambystoma maculatum. Science 192: 68–70.

    Google Scholar 

  • Punzo, E., 1983. Effects of environmental pH and temperature on embryonic survival capacity and metabolic rates in the small mouth salamander Ambystoma texanum. Bull. envir. Contam. Toxic. 31: 467–473.

    Google Scholar 

  • Riemann, B., E. Dieter, 1982. Extraction of chlorophylls aand bfrom phytoplankton using standard extraction techniques. Freshwat. Biol. 12: 217–223.

    Google Scholar 

  • Rzoska, J., 1984. Temporary and other waters. In Cloudsley–Thompson, L. J. (ed.), Sahara Desert. Pergamon Press, Oxford: 105–114.

    Google Scholar 

  • Scholnick, D. A., 1994. Seasonal variation and diurnal fluctuations in ephemeral desert pools. Hydrobiologia 294: 111–116.

    Google Scholar 

  • Shoop, C. R., 1965. Orientation in Ambystoma maculatum: Movements to and from breeding ponds. Science 149: 558–559.

    Google Scholar 

  • Shoop, C. R., 1968. Migratory orientation of Amystoma maculatum: Movements near breeding ponds and displacements of migrating individuals. Biol. Bull. 135: 230–238.

    Google Scholar 

  • Shoop, C. R., 1974. Yearly variation in larval survival of Amystoma maculatum. Ecology 55: 440–444.

    Google Scholar 

  • Smock, L. A. & D. L. Stoneburner, 1980. The response of macroinvertebrates to aquatic macrophyte decomposition. Oikos 35: 397–403.

    Google Scholar 

  • Stewart, M., 1956. The separate effects of food and temperature differences on development of marbled salamander larvae. J. Elisha Mitchell Sci. Soc. 72: 47–56.

    Google Scholar 

  • Stout, V. M., 1964. Studies on temporary ponds in Canterbury, New Zealand. Verh. int. Ver. Limnol. 15: 209–214.

    Google Scholar 

  • Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Arch. Hydrobiol. Suppl. 58–59: 97–206.

    Google Scholar 

  • Wilbur, H. M., 1972. Competition, predation, and the structure of the Ambystoma-Rana sylvaticacommunity. Ecology 53: 3–21.

    Google Scholar 

  • Williams, D. D., 1987. The Ecology of Temporary Waters. Timber Press, Portland, OR.

    Google Scholar 

  • Yaron Z., 1964. Notes on the ecology and entomostracan fauna of temporary rainpools of [sic] in Israel. Hydrobiologia 24: 489–513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Bonner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonner, L.A., Diehl, W.J. & Altig, R. Physical, chemical and biological dynamics of five temporary dystrophic forest pools in Central Mississippi. Hydrobiologia 353, 77–89 (1997). https://doi.org/10.1023/A:1003098526340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003098526340

Navigation