Skip to main content
Log in

Clay turbidity and the relative production of bacterioplankton and phytoplankton

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A comparison of phytoplankton with bacterioplanktonproduction as each ismodified by high concentrations of suspended clays ispresented. High clayturbidity caused light-limition of water columnphytoplankton production.However, the clay combined with DOC to form aggregateswhich supportedbacterioplankton production. Consequently,bacterioplankton production wasrelatively high at 42% of total small particleproduction in this lake.Bacterioplankton abundance and biomass was stronglycorrelated withphytoplankton chlorophyll a for most of the lake. Because of the association ofbacterioplankton with the clay-organic aggregates, DOCwas not a good predictorof bacterioplankton abundance or production. POC(primarily OC associatedwith clay) was correlated with bacterioplanktonabundance over most of thelake. Bacteria production was substrate limited asshown by much greaterbiomass-specific production at smaller bacteriapopulation sizes. Multipleregression analysis showed that specificbacterioplankton production wasprimarily governed by POC and secondarily by rates ofphytoplanktonproduction. Thus clay, because of light limitedphytoplankton production,negatively impacts bacterioplankton production yet atthe same time facilitatiesbacterial production by concentrating OC with theformation of the clay-organicaggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lind, O.T., Chrzanowski, T.H. & Dávalos-Lind, L. Clay turbidity and the relative production of bacterioplankton and phytoplankton. Hydrobiologia 353, 1–18 (1997). https://doi.org/10.1023/A:1003039932699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003039932699

Navigation