Skip to main content
Log in

Matching diatom assemblages in lake sediment cores and modern surface sediment samples: the implications for lake conservation and restoration with special reference to acidified systems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Restoration goals for damaged freshwater habitats can bedefinedaccording to ecological as well as to chemical criteria. Fordisturbed lakes, the sediment microfossil record can be usedtoselect potential modern analogue sites as possible restorationtarget ecosystems.Fossil diatom assemblages in two acidified lakes (Round LochofGlenhead and Loch Dee) in Galloway, Scotland, were comparedfloristically with modern surface sediment samples from ca. 200lakes in Britain, Ireland, Sweden and Norway using numericaltechniques. Mean squared Chi-squared dissimilarity (SCD)valuesbased on between sample Chi-square distance measures were usedtocompare samples.‘Space-for-time substitution’ using diatom assemblage matchingtechniques identified several modern analogue sites withHebrideanLoch Teanga and Irish Lough Claggan possessing modern diatomflorasmost similar to those which existed at the Round Loch ofGlenheadand Loch Dee before acidification.From the point of view of atmospheric pollution, the mostcloselymatching modern analogue sites were not necessarily in themostpristine regions. Some analogues occurred in UK regions ofmoderateor low acid deposition and modern diatom assemblages inatmospherically cleaner mid Norway were generally less similarfloristically.It is argued that identification of modern analogue sitesraisesthe possibility of using time-space substitution of closelymatchedmodern and fossil samples to infer whole lake ecosystems.Diatoms are however poor indicators of some water chemistryvariables and the two closest matched modern analogue siteshavetoo high calcium concentrations making faunistic comparisonsquestionable.Identification of good modern analogue lakes can be improvedbyusing selection criteria, other than diatoms, to pre-selectsites.Screening inappropriate sites according to water chemistry andbasin features combined with a larger biological database ofmodernand fossil samples offers a promising way of refining theselectionprocesses.Despite necessary refinements, modern analogue matching canpotentially identify whole lake ecosystems that can serve asbiological target communities for currently disturbed sites.Beingbased on biological rather than chemical criteria, thisapproachdoes not rely on species-water chemistry transfer functions.It istherefore directly relevant to lake conservation andrestorationobjectives and offers an alternative method for reconstructing lakepalaeo-environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, N. J., 1993. Natural versus anthropogenic change in lakes: the role of the sediment record. Tree 8: 356–361.

    Google Scholar 

  • Anderson, N. J. & B. Rippey, 1994. Monitoring lake recovery from point-source eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwat. Biol. 32: 625–639.

    Google Scholar 

  • Bartlein, P. J. & C. Whitlock, 1993. Palaeoclimate interpretation of the Elk Lake pollen record. In Bradbury, J. P. (ed.), Elk Lake, Minnesota: Evidence for Rapid Climatic Change in the North-Central United States. Geological Society of America Special Paper 276: 275–293.

  • Battarbee, R. W., T. E. H. Allott, S. Juggins, A. Kreiser, C. Curtis & R. Harriman, 1996. Critical loads of acidity to surface waters–an empirical diatom based palaeolimnological model. Ambio 25: 366–369.

    Google Scholar 

  • Battarbee, R. W., 1981. Changes in the diatom microflora of a eutrophic lake since 1900 from a comparison of old algal samples and the sedimentary record. Holarctic Ecol. 4: 73–81.

    Google Scholar 

  • Battarbee, R. W., N. J. Anderson, P. G. Appleby, R. J. Flower, S. C. Fritz, E. Y. Haworth, S. Higget, V. J. Jones, A. Kreiser, M. A. R. Munro, J. Natkanski, F. Oldfield, S. T. Patrick, P. J. N. Raven, N. G. Richardson, B. Rippey & A. C. Stevenson, 1988. Lake Acidification in the UK. ENSIS, London.

    Google Scholar 

  • Battarbee, R. W. & I. Renberg, 1990. The Surface Water Acidification Project (SWAP) Palaeolimnology Programme. Phil. Trans. r. Soc., Lond. B 327 227–232.

    Google Scholar 

  • Battarbee, R. W., A. C. Stevenson, B. Rippey, C. Fletcher, J. Natkanski, M. Wik & R. J. Flower, 1989. Causes of lake acidification in Galloway, south-west Scotland: a palaeolimnological evaluation of the relative roles of atmospheric contamination and catchment change for two acidified sites with non-afforested catchments. J. Ecol. 77: 651–672.

    Google Scholar 

  • Bellemakers, M. J. S. & H. van Dam, 1992. Improvement of breeding success of the moor frog (Rana arvalis) by liming of acid moorland pools and the consequences of liming for water chemistry and diatoms. Envir. Pollut. 78: 165–171.

    Google Scholar 

  • Berglund, B. E., 1986. Handbook of Holocene Palaeoecology and Palaeohydrology. New York. J. Wiley & Son.

    Google Scholar 

  • Birks, H. J. B., 1996. Contributions of Quaternary palaeoecology to nature conservation. J. Vegetation Sci. 7: 89–98.

    Google Scholar 

  • Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson, C. J. F. ter Braak, 1990a. Diatoms and pH reconstruction. Phil. Trans. r. Soc., Lond. B 327: 263–278.

    Google Scholar 

  • Birks, H. J. B., S. Juggins & J. M. Line, 1990b. Lake surface water chemistry reconstructions from palaeolimnological data. In Mason, B. J. (ed.), The Surface Waters Acidification Programme. Cambridge University Press: 301–313.

  • Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.

    Google Scholar 

  • Björk, S., 1988. Redevelopment of lake ecosystems–a case study approach. Ambio 17: 90–98.

    Google Scholar 

  • Brown, D. A., G. D. Howells, T. R. K. Dalziel & B. R. Stewart, 1988. Loch Fleet–a research watershed liming project. Water, Air, and Soil Pollution 41: 25–41.

    Google Scholar 

  • Bradshaw, A. D., 1983. The reconstruction of ecosystems. J. appl. Ecol. 20: 1–17.

    Google Scholar 

  • Bradshaw, A. D. & M. J. Chadwick, 1980. The Restoration of Land. Blackwell Scientific Publishers.

  • Broberg, O., 1988. Delayed nutrient responses to the liming of Lake Gårdsjön, Sweden. Ambio 17: 22–27.

    Google Scholar 

  • Cairns, J. Jr., 1988. Can ecosystems ever be restored to original condition. Restoration and Management Notes 16: 65–67.

    Google Scholar 

  • Cairns, J. Jr., 1990. Lack of theoretical basis for predicting rate and pathways of recovery. Envir. Mgmt 14: 517–526.

    Google Scholar 

  • Cameron, N. G., 1995. The representation of diatom communities by fossil assemblages in a small acid lake. J. Paleolimnol. 14: 185–223.

    Google Scholar 

  • Campbell, R. N. B., P. S. Maitland & A. A. Lyle, 1986. Brown trout deformities: an association with acidification. Ambio 15: 244–245.

    Google Scholar 

  • Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lake water characteristics in Adirondack lakes. Ecology 66: 994–1011.

    Google Scholar 

  • Charles, D. F. & J. P. Smol, 1994. Long-term chemical changes in lakes. In Baker, L. (ed.), Environmental Chemistry of Lakes and Reservoirs. Advances in Chemistry Series, American Chemical Society. Washington D.C.: 3–33.

    Google Scholar 

  • Davidson, W., 1987. Internal elemental cycles affecting the long-term alkalinity status of lakes: implications for lake restoration. Schweiz. Z. Hydrol. 49: 186–201.

    Google Scholar 

  • Davis, R. B. & D. S. Anderson, 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia 120: 69–87.

    Google Scholar 

  • Ek, A., O. Grahn, H. Hultberg & I. Renberg, 1995. Recovery from acidification in Lake Örvattnet, Sweden. Wat. Air Soil Pollut. 85: 1795–1800.

    Google Scholar 

  • Edmondson, W. T., 1977. Recovery of Lake Washington. In Cairns, J. Jr., K. L. Dickson & E. E. Herricks (eds), Recovery and Restoration of Damaged Ecosystems. University Press of Virginia, Charlottesville: 102–109.

    Google Scholar 

  • Edmondson, W. T., 1991. The Uses of Ecology. University of Washington Press.

  • Farmer, A. M., 1990. The effects of lake acidification on aquatic macrophytes–a review. Envir. Pollut. 65: 219–240.

    Google Scholar 

  • Flower, R. J., 1986a. The relationship between surface sediment diatom assemblages and pH in 33 Galloway lakes: some regression models for reconstructing pH and their application to sediment cores. Hydrobiologia 143: 93–103.

    Google Scholar 

  • Flower, R. J., 1986b. An evaluation of some early diatom material and chemical data from Lough Neagh, Northern Ireland. Diatom Res. 1: 19–26.

    Google Scholar 

  • Flower, R. J., R. W. Battarbee & P. G. Appleby, 1987. The recent palaeolimnology of acid lakes in Galloway, south-west Scotland: diatom analysis, pH trends, and the role of afforestation. J. Ecol. 75: 797–824.

    Google Scholar 

  • Flower, R. J. & A. J. Nicholson, 1987. Relationships between bathymetry, water quality and diatoms in some Hebridean lochs. Freshwat. Biol. 18: 71–85.

    Google Scholar 

  • Flower, R. J., N. G. Cameron, N. Rose, S. C. Fritz, R. Harriman & A. C. Stevenson, 1990. Post-1970 water-chemistry changes and palaeolimnology of several acidified upland lakes in the UK. Phil. Trans. r. Soc., Lond. B327: 427–433.

    Google Scholar 

  • Flower, R. J., B. Rippey, N. L. Rose, P. G. Appleby & R. W. Battarbee, 1994. Palaeolimnological evidence for the acidification and contamination of lakes by atmospheric pollution in western Ireland. J. Ecol. 82: 581–596.

    Google Scholar 

  • Flower, R. J., V. J. Jones & F. E. Round, 1996. The distribution and classification of the problematic Fragilaria (virescens)v. exiguaGrun/Fragilaria exiguiformis(Grun.) Lange-Bertalot: a new species or a new genus. Diatom Res. 11: 41–57.

    Google Scholar 

  • Gunn, J. M. (ed.). 1995. Restoration and Recovery of an Industrial Region. Spring-Verlag, New York.

    Google Scholar 

  • Harriman, R., B. R. S. Morrison, L. A. Caines, P. Collen & W. A. Watt, 1987. Long-term changes in fish populations of acid streams and lochs in Galloway, South West Scotland. Wat. Air Soil Pollut. 32: 89–112.

    Google Scholar 

  • Harvey, H. T. & M. N. Josselyn, 1986. Wetland restoration and mitigation policies. Envir. Mgmt 10: 567–569.

    Google Scholar 

  • Henriksen, A., J. Kamari & A. Wilander, 1992. Critical loads of acidity: Nordic surface waters. Ambio 21: 356–363.

    Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology. Introduction to Lake Biology and the Limnoplankton Vol. 2. New York, J. Wiley & Sons.

    Google Scholar 

  • Jordan, W. R., M. E. Gilpin & J. D. Aber, 1987. Restoration Ecology: a synthetic approach to ecological research. Cambridge University Press.

  • Juggins, S., R. J. Flower & R. W. Battarbee, 1996. Palaeolimnological evidence for the chemical and biological changes in the UK Acid Waters Monitoring Network. Freshwat. Biol. 36: 203–219.

    Google Scholar 

  • Kelly, J. R. & M. A. Harwell, 1990. Indicators of ecosystem restoration. Envir. Mgmt 14: 527–545.

    Google Scholar 

  • Macan, T. T., 1954. A contribution to the study of the ecology of Corixidae (Hemipt.). J. anim. Ecol. 23: 115–141.

    Google Scholar 

  • Manly, B. J. F., 1991. Randomization and Monte Carlo Methods in Biology. Chapman & Hall, London.

    Google Scholar 

  • Muniz, I. P. & L. Walløe, 1990. The influence of water quality and catchment characteristics on the survival of fish populations. In Mason, J. B. (ed.), The Surface Waters Acidification Programme. Cambridge University Press: 327–339.

  • Muniz, I. P., 1987: Some recent observations on the regional water chemistry, fish, and aquatic animals from lakes and streams in the Hoylandet area: a preliminary report. Proceedings, SurfaceWater Acidification Programme (SWAP) Review Conference, Bergen, 22–26 June 1987: 259–265.

  • Munro, M. A. R., A. M. Kreiser, R. W. Battarbee, S. Juggins, A. C. Stevenson, D. S. Anderson, N. J. Anderson, F. Berge, H. J. B. Birks, R. B. Davis, R. J. Flower, S. C. Fritz, E. Y. Haworth, V. J. Jones, J. C. Kingston & I. Renberg, 1990. Diatom quality control and data handling. Phil. Trans. r. Soc., Lond. B327: 257–261.

    Google Scholar 

  • Oldfield, F., 1970. The ecological history of Blelham Bog National Nature Reserve. In Walker, D. & R. G. West (eds), Studies in the Vegetational History of the British Isles, Cambridge University Press London: 141–157.

    Google Scholar 

  • Ormerod, S. J., N. Allinson, D. Hudson & S. J. Tyler, 1986. The distribution of breeding dippers (Cinclus cinclus(L.): Aves) in relation to stream acidity in upland Wales. Freshwat. Biol. 16: 501–507.

    Google Scholar 

  • Overpeck, J. T., T. Webb III & I. C. Prentice, 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogues. Quaternary Res. 23: 87–108.

    Google Scholar 

  • Palmer, M., 1992. A botanical classification of standing waters in Great Britain. Research and Survey in Nature Conservation. No. 19. Joint Nature Conservation Committee, Peterborough, UK.

    Google Scholar 

  • Pickett, S. T. A., 1988. Space-for-time substitution as an alternative to long-term studies. In Likens, G. E. (ed.), Long-term Studies in Ecology, Approaches and Alternatives. Spinger-Verlag, New York: 110–135.

    Google Scholar 

  • Raven, P. J., 1985. The use of macrophytes to assess water quality changes in some Galloway lochs: an exploratory study. Working Paper No. 9. Environmental Change Research Centre, University College London.

    Google Scholar 

  • Renberg, I. & H. Hultberg, 1992. A paleolimnological assessment of acidification and liming on diatom assemblages in a Swedish lake. Can. J. Fish. aquat. Sci. 49: 65–72.

    Google Scholar 

  • Rutt, G. P., N. S. Weatherly & S. J. Ormerod, 1990. Relationships between physicochemistry and macroinvertebrates of British upland streams: the development of modelling and indicator systems for predicting fauna and detecting acidity. Freshwat. Biol. 24: 463–480.

    Google Scholar 

  • Schindler, D. W., 1980. Experimental acidification of a whole lake: A test of the oligotrophication hypothesis. In Drabløs, D. & A. Tollan (eds), Proceedings of an International Conference, Sandefjord, Norway, March 11–14, 1980. SNSF Project, Oslo: 370–374.

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Google Scholar 

  • Shiva, J., A. Bandyopadhyaya & N. D. Jayal, 1985. Afforestation in India: problems and strategies. Ambio 14: 329–333.

    Google Scholar 

  • Smeltzer, E. & E. B. Swain, 1985. Answering lake management questions with palaeolimnology. In Lake and Reservoir Management–Practical Applications. Proceedings of the 4th Annual Conference and International Society. North American Lake Management Society. Merrifield, Virginia: 268–274.

  • Spence, D. H. N., E. Allen & J. Fraser, 1979. The macrophyte vegetation of fresh and brackish waters in and near Loch Druidibeg National Nature Reserve, South Uist. Proceedings of the Royal Society of Edinburgh 77B: 207–328.

    Google Scholar 

  • Spence, D. H. N., 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. J. Ecol. 55: 147–170.

    Google Scholar 

  • Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lake Water Chemistry Data Set. ENSIS LTD. London.

    Google Scholar 

  • Uutala, A. J., N. D. Yan, A. S. Dixit, S. S. Dixit & J. P. Smol, 1994. Paleolimnological assessment of damage to fish communities in three acidic, Canadian Shield lakes. Fish. Res. 19: 157–177.

    Google Scholar 

  • van Dam, H. & A. Mertens, 1990. A comparison of recent epilithic diatom assemblages from the industrially acidified, and copper polluted Lake Orta (northern Italy) with old literature data. Diatom Res. 5: 1–13.

    Google Scholar 

  • van Dam, H. & H. Kooyman-van Blokland, 1978. Man-made changes in some Dutch moorland pools, as reflected by historical and recent data about diatoms and macrophytes. Int. Revue ges. Hydrobiol. 63: 587–607.

    Google Scholar 

  • Vollenweider, R. A., 1987: Scientific concepts and methodologies pertinent to lake research and lake restoration. Schweiz. Z. Hydrol. 49: 131–147.

    Google Scholar 

  • Wade, K. R., S. J. Ormerod & A. S. Gee, 1989. Classification and ordination of macroinvertebrate assemblages to predict stream acidity in upland Wales. Hydrobiologia 171: 59–78.

    Google Scholar 

  • Waterson, A. R. & I. Lister, 1979. The macrofauna of brackish and freshwaters of the Loch Druidibeg National Nature Reserve and its neighbourhood, South Uist. Proc. r. Soc. Edinburgh 77B: 353–376.

    Google Scholar 

  • Wheeler, A., 1974. The Tidal Thames, the History of a River and its Fishes. Routledge & Kegan Paul Ltd. London.

    Google Scholar 

  • Wright, J. F., P. D. Armitage, M. T. Furse & D. Moss, 1989. Prediction of invertebrate communities using stream measurements. Regulated Rivers: Res. Mgmt 4: 147–155.

    Google Scholar 

  • Zelder, J. B. & R. Langis, 1991. Comparisons of constructed and natural salt marshes of San Diego Bay. Restoration and Management Notes, 9: 21–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flower, R.J., Juggins, S. & Battarbee, R.W. Matching diatom assemblages in lake sediment cores and modern surface sediment samples: the implications for lake conservation and restoration with special reference to acidified systems. Hydrobiologia 344, 27–40 (1997). https://doi.org/10.1023/A:1002941908602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002941908602

Keywords

Navigation