Skip to main content
Log in

Acquired antibiotic resistance in lactic acid bacteria from food

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Acquired antibiotic resistance, i.e. resistance genes located on conjugative or mobilizable plasmids and transposons can be found in species living in habitats (e.g. human and animal intestines) which are regularly challenged with antibiotics. Most data are available for enterococci and enteric lactobacilli. Raw material from animals (milk and meat) which are inadvertantly contaminated with fecal matters during production will carry antibiotic resistant lactic acid bacteria into the final fermented products such as raw milk cheeses and raw sausages. The discovered conjugative genetic elements of LAB isolated from animals and food are very similar to elements studied previously in pathogenic streptococci and enterococci, e.g. θ-type replicating plasmids of the pAMβ1, pIP501-family, and transposons of the Tn916-type. Observed resistance genes include known genes like tetM, ermAM, cat, sat and vanA. A composite 29'871 bp resistance plasmid detected in Lactococcus lacti s subsp. lactis isolated from a raw milk soft cheese contains tetS previously described in Listeria monocytogenes, cat and str from Staphylococcus aureus. Three out of five IS elements on the plasmid are almost or completely identical to IS1216 present in the vanA resistance transposon Tn1546. These data support the view that in antibiotic challenged habitats lactic acid bacteria like other bacteria participate in the communication systems which transfer resistance traits over species and genus borders. The prevalence of such bacteria with acquired resistances like enterococci is high in animals (and humans) which are regularly treated with antibiotics. The transfer of antibiotic resistant bacteria from animals into fermented and other food can be avoided if the raw substrate milk or meat is pasteurized or heat treated. Antibiotic resistance traits as selectable markers in genetic modification of lactic acid bacteria for different purposes are presently being replaced, e.g. by metabo lic traits to generate food-grade vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn C, Collins-Thompson D, Duncan C & Stiles ME (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum caTC2R. Plasmid 27: 169-176

    Google Scholar 

  • Ainsa JA, Blokpoel MCJ, Otal I, Young DB, de Smet KAL & Martin C (1998) Molecular doing and characterization of tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J. Bacteriol. 180: 5836-5843

    Google Scholar 

  • Antony SJ, Stratton CW & Dummer JS (1996) Lactobacillus bacteremia: description of the clinical course in adult patients without endocarditis. Clin. Infect. Dis. 23: 773-778

    Google Scholar 

  • Aarestrup FM, Eager F, Jensen NE, Madsen M, Meyling A & Wegener HC (1998) Resistance to antimicrobial agents used for animal therapy in pathogenic-, zoonotic-and indicator bacteria isolated from different food animals in Denmark: a baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). APMIS 106: 745-770

    Google Scholar 

  • Arthur M & Courvalin P (1994) Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37: 1563-1571

    Google Scholar 

  • Baquero F, Negir MC, Morosini MI & Blazquez J (1997) The antibiotic selection process: concentration-specific amplification of low-level resistant populations. In: Antibiotic Resistance. Origins, evolution, selection and spread (pp. 87-105). Chadwick DJ & Goode J (Eds.) John Wiley & Sons, Chichester

    Google Scholar 

  • Bates J, Jordens Z & Selkon JB (1993) Evidence for an animal origin of vancomycin-resistant enterococci. The Lancet 342: 490-49

    Google Scholar 

  • Batish VK & Ranganathan B (1986) Antibiotic susceptibility of deoxyribonuclease-positive enterococci isolated from milk and milk products and their epidemiological significance. Int. J. Food Microbiol. 16: 203-206

    Google Scholar 

  • Berg T, Firth N, Apisiridej S, Hettiaratchi A, Leelaporn A & Skurray R A (1998) Complete nucleotide sequence of pSK41: Evolution of staphylococcal conjugative multiresistance plasmids. J. Bacteriol. 180: 4350-4359

    Google Scholar 

  • Bolhuis H, Poelarends G, van Veen HW, Poolman B, Driessen AJM & Konings WN (1995) The lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J. Biol. Chem. 270: 26092-26098

    Google Scholar 

  • Brockmann E, Jacobsen BL, Hertel C, Ludwig W, Schleifer KH (1998) Monitoring of genetically modified Lactococcus lactis in gnotobiotic and conventional rats by using antibiotic resistance markers and specific probe or primer based methods. System. Appl. Microbiol. 19: 203-212

    Google Scholar 

  • Celli J & Trieu-Cuot P (1998) Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28: 103-117

    Google Scholar 

  • Charpentier E, Gerbaud G & Courvalin P (1994) Presence of the Listeria tetracycline resistance gene tet(S) in Enterococcus faecalis. Antimicrob. Agents Chemother. 38: 2330-2335

    Google Scholar 

  • Charpentier E, Gerbaud G, Jacquet C, Rocourt J & Courvalin P (1995) Incidence of antibiotic resistance in Listeria species. J. Infect. Dis. 172: 277-281

    Google Scholar 

  • Charteris WP, Kelly PM, Morelli L & Collins JK (1998) Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Lett. Appl. Microbiol. 26: 333-337

    Google Scholar 

  • Clewell DB (1994) Bacterial Conjugation (DB Clewell, Ed.). Plenum Press, New York

    Google Scholar 

  • Clewell DB, Flannagan SE & Jaworsky DD (1995) Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3: 229-236

    Google Scholar 

  • Climo M, Sharma VK & Archer GL (1996) Identification and characterization of the origin of conjugative transfer (oriT) and gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J. Bacteriol. 178: 4975-4983

    Google Scholar 

  • Corpet EE (1988) Antibiotic resistance from food (letter). New England J. Med. 318: 1206-1067

    Google Scholar 

  • Curragh HJ & Collins MA (1992) High levels of spontaneous drug resistance in Lactobacillus. J. Appl. Bacteriol. 73: 31-36

    Google Scholar 

  • Davies JE (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375-382

    Google Scholar 

  • Davies JE (1997) Origins, acquisition and dissemination of antibiotic resistance determinants. In: Chadwick DJ & Goode J (Eds.) Antibiotic Resistance. Origins, evolution, selection and spread (pp. 15-27). John Wiley & Sons, Chichester

    Google Scholar 

  • De Fabrizio SV, Parada JL & Ledford RA (1994) Antibiotic resistance of Lactococcus lactis — an approach of genetic determinants location through a model system. Microbiologie-Aliments-Nutritions 12: 307-315

    Google Scholar 

  • Dellaglio F, Dicks LMT & Torriani S (1995) The genus Leuconostoc. In: Wood BJB & Holzapfel WH (Eds.) The Genera of Lactic Acid Bacteria (pp. 235-278). Blackie Academic & Professional, London

    Google Scholar 

  • Dessart SR & Steenson LR (1991) High frequency intergeneric and intrageneric conjugal transfer of drug resistance plasmids in Leuconostoc mesenteroides ssp. cremoris. J. Dairy Sci. 74: 2912-2919

    Google Scholar 

  • Devriese LA & Pot B (1995) The genus Enterococcus. In: Wood BJB and Holzapfel WH (Eds.) The genera of lactic acid bacteria (pp. 327-367). Blackie Academic & Professional, London

    Google Scholar 

  • De Vos WM & Simons GFM (1994) Gene cloning and expression systems in Lactococci. In: Gasson MJ & de Vos WM (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria (pp. 52-105). Blackie Acadmic & Professional, London

    Google Scholar 

  • Dodd HM, Horn N, Gasson MJ (1990) Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol. 136: 555-566

    Google Scholar 

  • Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A & Courvalin P (1991) Inducible transfer of conjugative Transposon Tn1545 fromEnterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob. Agents & Chemother. 35: 185-187

    Google Scholar 

  • Dougherty BA, Hill C, Weidman JF, Richardson DR, Venter JC & Ross RP (1998) Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol. Microbiol. 29: 1029-1038

    Google Scholar 

  • Elisha BG & Courvalin P (1995) Analysis of genes encoding D-alanine: D-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene 152: 79-83

    Google Scholar 

  • Elmer GW, Surawics ChM & McFarland LV (1996) Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. J. Am. Med. Assoc. 275: 870-876

    Google Scholar 

  • Falkiner FR (1998) The consequences of antibiotic use in horticulture. J. Antimicrob. Chemother. 41: 429-431

    Google Scholar 

  • Flannagan SE, Zitzow LA, Su YA & Clewell DB (1994) Complete nucleotide sequence of the 18-kb conjugative transposon Tn916 fromEnterococcus faecalis. Plasmid 32: 350-354

    Google Scholar 

  • Foley S, Bron S, Venema G, Daly C & Fitzgerald GF (1996) Molecular analysis of the replication origin of the Lactococcus lactis plasmid pCI305. Plasmid 36: 125-141

    Google Scholar 

  • Fons M, Hégé T, Ladiré M, Raibaud P, Ducluzeau R & Maguin E (1997) Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37: 199-203

    Google Scholar 

  • François B, Charles M & Courvallin P (1997) Conjugative transfer of tet(S) between strains of Enterococcus faecalis is associated with the exchange of large fragments of chromosomal DNA. Microbiology 143: 2145-2154

    Google Scholar 

  • Gasson MJ & Davies FL (1980) Conjugal transfer of the drug resistance plasmid pAM/β1 in the lactic streptococci. FEMS Microbiol. Lett. 7: 51-53

    Google Scholar 

  • Gasson MJ & Fitzgerald GF (1994) Gene transfer systems and transposition. In: Gasson MJ & de Vos WM (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria (pp. 1-51). Blackie Academic & Professional, London

    Google Scholar 

  • Giraffa G, Carminati D & Neviani E (1997) Enterococci isolated from dairy products: a review of risks and potential technological use. J. Food Protect. 60: 732-738

    Google Scholar 

  • Grüneberg RN & Hryniewicz W (1998) Clinical relevance of a European collaborative study on comparative susceptibility of Gram-positive clinical isolates to teichoplanin and vancomycin. Intern. J. Antimicrob. Ag. 10: 271-277

    Google Scholar 

  • Guédon G, Bourgoin F, Pébay M, Roussel Y, Colmin C, Simonet JM & Decaris B (1995) Characterization and distribution of two insertion sequences, IS1191 and iso-IS981, in Streptococcus thermophilus: does intergeneric transfer of insertion sequences occur in lactic acid bacteria co-cultures? Mol. Microbiol. 16: 69-78

    Google Scholar 

  • Guiney M & Urwin G (1993) Frequency and antimicrobial susceptibility of clinical isolates of enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 12: 362-366

    Google Scholar 

  • Hadorn K, Kayser FH & Hächler H (1994) Miniplasmid derived from Listeria monocytogenes multiresistance plasmid pWDB100 upon conjugal transfer into Staphylococcus epidermidis carries chloramphenicol resistance gene identical with staphylococcal gene. System. Appl. Microbiol. 17: 492-500

    Google Scholar 

  • Hadorn K, Hächler H, Schaffner A & Kayser FH (1993) Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 12: 928-937

    Google Scholar 

  • Hammerum AM, Jensen LB, Aarestrup FM (1998) Detectin of the satA gene and transferability of virginiamycin resistance in Enterococcus faecium from food-animals. FEMS Microbiol. Lett. 168: 145-151

    Google Scholar 

  • Handwerger S & Skoble J (1995) Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 39: 2446-2453

    Google Scholar 

  • Herrero M, Mayo B, Gonzales B & Suarez JE (1996) Evaluation of technologically important traits in lactic acid bacteria isolated from spontaneous fermentations. J. Appl. Bacteriol. 81: 565-570

    Google Scholar 

  • Huycke MM, Sahm DF & Gilmore MS (1998) Multiple-drug resistant enterococci: The nature of the problem and agenda for the future. Emerging Infect. Dis. 4: 239-249

    Google Scholar 

  • Janzen T, Kleinschmidt J, Neve H & Geis A (1992) Sequencing and characterization of pST1, a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiol. Lett. 95: 175-180

    Google Scholar 

  • Jensen LB, Fridmodt-Moller N & Aarestrup FM (1999) Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol. Lett. 170: 151-158

    Google Scholar 

  • Jensen LB (1998) Internal variations in Tn1546-like elements due to the presence of IS1216V. FEMS Microbiol. Lett. 169: 349-354

    Google Scholar 

  • Jett BD, Huycke M & Gilmore MS (1994) Virulence of enterococci. Clin. Microbiol. Rev. 7: 462-478

    Google Scholar 

  • Khan E, Mack JPG, Katz RA, Kulkosky J & Skalka AM (1990) Retroviral integrase domain: DNA binding and the recognition of LTR sequences. Nucleic Acids Research 19: 851-861

    Google Scholar 

  • Kilpper-Bälz R, Fischer G & Schleifer K-H (1982) Nucleic acid hybridization of group D streptococci. Curr. Microbiol. 7: 245-250

    Google Scholar 

  • Klaenhammer TR & Sutherland SM (1980) Detection of plasmid deoxyribonucleic acid in an isolate of Lactobacillus acidophilus. Appl. Environ. Microbiol. 39: 671-674

    Google Scholar 

  • Klare I, Heier H, Claus H, Böhme G, Marin S, Seltmann G, Hakenbeck R, Altanassova V & Witte W (1995) Enterococcus faecium strains with vanA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and fecal samples of humans in the community. Microb. Drug Resistance 1: 265-272

    Google Scholar 

  • Klare I, Heier H, Claus H, Reissbrodt R & Witte W (1995) vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol. Lett. 125: 165-172

    Google Scholar 

  • Klein G, Pack A & Reuter G (1998) Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl. Environ. Microbiol. 64: 1825-1830

    Google Scholar 

  • Kleinschmidt J, Seeding B, Teuber M & Neve H (1993) Evaluation of horizontal and vertical gene transfer and stability of heterologous DNA in Streptococcus thermophilus isolated from yogurt and yogurt starter cultures. System. Appl. Microbiol. 16: 287-295

    Google Scholar 

  • Knudtson LM & Hartman PA (1993) Antibiotic resistance among enterococci isolates from environmental and clinical sources. J. Food Protect. 56: 489-492

    Google Scholar 

  • Kullen MJ & Klaenhammer TR (1999) Genetic Modification of Intestinal Lactobacilli and Bifidobacteria. In: Tannock GW (Ed.) Probiotics, a critical review (pp. 65-83). Horizon Scientific Press, Wymondham

    Google Scholar 

  • Leenhouts K, Bolhuis A, Venema G, Kok J (1998) Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl. Microbiol. Biotechnol. 49: 417-423

    Google Scholar 

  • Levy SB (1997) Antibiotic resistance: An ecological imbalance. In: Chadwick DJ & Goode J (Eds.) Antibiotic Resistance. Origins, evolution, selection and spread (pp. 1-14). John Wiley & Sons, Chichester

    Google Scholar 

  • Liassine N, Frei R, Jan I & Auckenthaler R (1998) Characterization of glycopeptide-resistant enterococci from a Swiss hospital. J. Clin. Microbiol. 36: 1853-1858

    Google Scholar 

  • Lin ChF, Fung ZF, Wu ChL & Chung TCh (1996) Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-IC) from Lactobacillus reuteri G4. Plasmid 36: 116-124

    Google Scholar 

  • Marra D & Scott JR (1999) Regulation of excision of the conjugative transposon Tn916. Mol. Microbiol. 31: 609-621

    Google Scholar 

  • Macrina FL & Archer GL (1993) Conjugation and broad host range plasmids in streptococci and staphylococci. In: Clewell DB, (Ed.) Bacterial Conjugation (pp. 313-368). Plenum Press, New York

    Google Scholar 

  • McDonald LC, Kuehnert MJ, Tenover FC & Jarvis WR (1997) Vancomycin-resistant enterococci outside the health-care setting: prevalence, sources, and public health implications. Emerging Infect. Dis. 3: 311-317

    Google Scholar 

  • McKay L Funcional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49: 259-274

  • Mercenier A, Pouwels PH & Chassy BM (1994) Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus. In: Gasson MJ & de Vos WM (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria (pp. 252-293). Blackie Academic & Professional, London

    Google Scholar 

  • Ministry of Agriculture and Forestry (Finland) (1997) Tylosin and spiramycin as feed additives — Influence on the efficacy of therapeutic macrolides, Report from the Republic of Finland according to article 29 of the treaty between Member States of the European Union and the Republic of Finland on the scientific arguments for the adaptation to prohibit the use of tylosin and spiramycin as feed additives in animal nutrition by the National Veterinary and Food Research Institut (EELA) (E. Tast, T Honkanen-Buzalski & P Mannerkop, Eds.). Publications of Ministry of Agriculture and Forestry 5/1997, Helsinki

  • Ministry of Agriculture, Fisheries and Food (UK) (1998) A review of antimicrobial resistance in the food chain, July 1998. A technical report for MAFF. MAFF Publications, London

    Google Scholar 

  • Ministry of Agriculture (Sweden), Government Official Reports 132 (1997) Antimicrobial feed additives. Report from the Commission on Antimicrobial Feed Additives. Norsteedts Tryckeri AG., Stockholm

    Google Scholar 

  • National Research Council & Institute of Medicine (1998) The use of drugs in food animals: benefits and risks. National Academy Press, Washington

    Google Scholar 

  • Neu HC (1992) The crisis in antibiotic resistance. Science 257: 1064-1973

    Google Scholar 

  • Neve H, Geis A & Teuber M (1987) Conjugation, a common plasmid transfer mechanism in lactic acid streptococci of dairy starter cultures. System. Appl. Microbiol. 9: 151-157

    Google Scholar 

  • Noble WC, Virani Z & Cree RGA (1992) Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93: 195-198

    Google Scholar 

  • Orberg PK & Sandine WE (1985) Survey of antimicrobial resistance in lactic streptococci. Appl. Environ. Microbiol. 49: 538-542

    Google Scholar 

  • Pechmann H & Teuber M (1980) Plasmid pattern of Group N (lactic) Streptococci. Zbl. Bakt. I. Orig. C1: 133-136

    Google Scholar 

  • Perreten V, Kollöffel B & Teuber M (1997a) Conjugal transfer of the Tn916-like transposon TnFO1 from Enterococcus faecalis isolated from cheese to other Gram-positive bacteria. System. Appl. Microbiol. 20: 27-38

    Google Scholar 

  • Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G & Teuber M (1997b) Antibiotic resistance spread in food. Nature 389: 801-802

    Google Scholar 

  • Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL & Courvalin P (1990) Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. The Lancet 335: 1422-1426

    Google Scholar 

  • Quednau M, Ahrne S, Petersson AC & Molin G (1998) Antibiotic-resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. J. Appl. Microbiol. 84: 1163-1170

    Google Scholar 

  • Reilly A & Käferstein F (1997) Food safety hazards and the application of the principles of the hazard analysis and critical control point (HACCP) system for their control in aquaculture production. Aquaculture Res. 28: 735-752

    Google Scholar 

  • Rice LB & Carias LL (1997) Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J. Bacteriol. 180: 714-721

    Google Scholar 

  • Rice LB (1998) Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42: 1871-1877

    Google Scholar 

  • Rinckel LA & Savage DC (1990) Characterization of plasmids and plasmid-borne macrolide resistance from Lactobacillus sp. strains. Plasmid 23: 100-133

    Google Scholar 

  • Rollins LR, Lee LN & LeBlanc DJ (1985) Evidence for a disseminated erythromycin resistance determinant mediated by Tn917-like sequences among group D streptococci isolated from pigs, chickens, and humans. Antimicrob. Agents Chemother. 27: 439-444

    Google Scholar 

  • Sami M, Yamashita H, Hirono T, Kadokura H, Kitamoto K, Yoda K & Yamasaki M (1997) Hop-resistant Lactobacillus brevis contains novel plasmid harboring a multidrug resistance-like gene. J. Fermentation & Bioengineering 84: 1-6

    Google Scholar 

  • Schäfer A, Jahns A, Geis A & Teuber M (1991) Distribution of the IS elements ISS1 and IS904 in lactococci. FEMS Microbiology Letters 80: 311-318

    Google Scholar 

  • Schleifer KH & Ludwig W (1995) Phylogenetic relationships of lactic acid bacteria. In: Wood BJB & Holzapfel WH (Eds.) The Genera of Lactic Acid Bacteria (pp. 7-18). Blackie Academic & Professional, London

    Google Scholar 

  • Schmalreck AF, Teuber M, Reininger W & Hartl A (1975) Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Canad. J. Microbiol. 21: 205-212

    Google Scholar 

  • Schmieger H & Schicklmaier P (1999) Transduction of multiple drug resistance of Salmonella enterica serovar thyphimurium DT104. FEMS Microbiol. Lett. 170: 251-256

    Google Scholar 

  • Schwarz F, Perreten V & Teuber M (1999) Mef214, a putative efflux protein, of Lactococcus lactis subsp. lactis K214 conferring increased macrolide resistance in Escherichia coli. (paper submitted).

  • Scott JR (1992) Sex and the single circle: conjugative transposition. J. Bacteriol. 174: 6005-6010

    Google Scholar 

  • Sgorbati B, Biavati B & Palenzona D (1995) The genus Bifidobacterium. In: Wood BJB & Holzapfel WH (Eds.). The Genera of Lactic Acid Bacteria (pp. 279-306). Blackie Academic & Professional, London

    Google Scholar 

  • Sievers M, Teuber M, Wirsching F, Perreten V, Eisenring R, Fähndrich P, Schlaepfer S, Krusch U, Simm Ch & Löhmer A (1993) Antibiotic resistance properties of enterococci and staphylococci from fermented food. FoodMicro '93, Book of Abstracts (pp. 191)

  • Simpson WJ, Hammond JRM & Miller RB (1988) Avoparcin and vancomycin: Useful antibiotics for the isolation of brewery lactic acid bacteria. J. Appl. Bacteriol. 64: 299-310

    Google Scholar 

  • Simpson WJ & Taguchi H (1995) The genus Pediococcus with notes on the genera Tetratogenococcus and Aerococcus. In: The Genera of Lactic Acid Bacteria (pp. 125-172). Blackie Academic & Professional, London

    Google Scholar 

  • Soeding B, Kleinschmidt J, Teuber M & Neve H (1993) Assessment of abilities of conjugal transfer and stability of p AMβ1 in dairy lactobacilli with emphasis on thermophilic and nonstarter lactobacilli. System. Appl. Microbiol. 16: 296-302

    Google Scholar 

  • Sozzi T & Smiley MB (1980) Antibiotic resistances of yogurt starter cultures Streptococcus thermophilus and Lactobacillus bulgaricus. Appl. Environ. Microbiol. 40: 862-865

    Google Scholar 

  • Tannock GW (1987) Conjugal transfer of plasmid pAMβ1 in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis. Appl. Environ. Microbiol. 53: 2693-2695

    Google Scholar 

  • Tannock GW (1998) Probiotics. A critical review. Horizon Scientific Press, Wymondham

    Google Scholar 

  • Tannock GW, Luchansky JB, Miller L, Connell H, Thode-Andersen S, Mercer AA & Klaenhammer TR (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacilllus reuteri 100-163. Plasmid 31: 60-71

    Google Scholar 

  • Teuber M and Schmalreck AF (1973) Membrane leakage in Bacillus subtilis 168 induced by the hop constituents lupulone, humulone, isohumulone and humulinic acid. Arch. Mikrobiol. 94: 159-171

    Google Scholar 

  • Teuber M (1993) Lactic acid bacteria. In: J Rehm, Reed G, Pühler A & Stadler P (Eds.)'Biotechnology' Vol. 1, 2nd edition (pp. 326-365). Verlag Chemie, Weinheim

    Google Scholar 

  • Teuber M (1995) The genus Lactococcus. In Wood BJB & Holzapfel WH (Eds.) The Genera of Lactic Acid Bacteria (pp. 173-234). Blackie Academic & Professional, London

    Google Scholar 

  • Teuber M, Perreten V & Wirsching F (1996) Antibiotikumresistente Bakterien: eine neue Dimension in der Lebensmittelmikrobiologie. Lebensmittel-Technologie 29: 182-199

    Google Scholar 

  • Thai LA, Chow JW, Mahayni R, Bonilla H, Perri MB, Donabedia SA, Silverman J, Taber S & Zervos MJ (1995) Characterization of antimicrobial resistance in enterococci of animal origin. Antimicrob. Agents Chemother. 39: 2112-2115

    Google Scholar 

  • Trieu-Cuot P, de Cespédès G, Bentorcha F, Delbos F, Caspar E & Horaud T (1993) Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: Characterization of a new CAT determinant. Antimicrob. Agents Chemother. 37: 2593-2598

    Google Scholar 

  • Van den Braak N, van Belkum A, van Keulen M, Vliegenthart J, Verbrugh HA & Endtz HP (1998) Molecular characterization of vancomycin-resistant enterococci from hospitalized patients and poultry products in the Netherlands. J. Clin. Microbiol. 36: 1927-1932

    Google Scholar 

  • Van Veen HW & Konings WN (1998) The ABC family of multidrug transporters in microorganisms. Biochim. Biophys. Acta 1365, 31-36

    Google Scholar 

  • Vescovo M, Morelli L & Bottazzi V (1982) Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. Appl. Environ. Microbiol. 43: 50-56

    Google Scholar 

  • Von Wright A & Räty K (1993) The nucleotide sequence for the replication region of pVS40, a lactococcal food grade cloning vector. Lett. Appl. Microbiol. 17: 25-28

    Google Scholar 

  • Watanabe T (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27: 87-115

    Google Scholar 

  • WHO (1997) The medical impact of the use of antimicrobials in food animals. Report of a WHO Meeting, Berlin, Germany, 13-17 October 1997. WHO, Geneva

    Google Scholar 

  • Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279: 996-997

    Google Scholar 

  • Wu K, An FY & Clewell DB (1999) Enterococcus faecalis Pheromone-responding plasmid pAD1 gives rise to an aggregation (clumping) response when cells are exposed to subinhibitory concentrations of chloramphenicol, erythromycin or tetracycline. Plasmid 41: 82-88

    Google Scholar 

  • Wüst J, Zbinden R & Kayser FH (1998) Die Empfindlichkeit von Bakterien gegen Chemotherapeutika (Zürich 1996). Praxis 87: 403-412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teuber, M., Meile, L. & Schwarz, F. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76, 115–137 (1999). https://doi.org/10.1023/A:1002035622988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002035622988

Navigation