Skip to main content
Log in

The Genesis Solar Wind Concentrator

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The primary goal of the Genesis Mission is to collect solar wind ions and, from their analysis, establish key isotopic ratios that will help constrain models of solar nebula formation and evolution. The ratios of primary interest include 17O/16O and 18O/16O to ±0.1%, 15N/14N to ±1%, and the Li, Be, and B elemental and isotopic abundances. The required accuracies in N and O ratios cannot be achieved without concentrating the solar wind and implanting it into low-background target materials that are returned to Earth for analysis. The Genesis Concentrator is designed to concentrate the heavy ion flux from the solar wind by an average factor of at least 20 and implant it into a target of ultra-pure, well-characterized materials. High-transparency grids held at high voltages are used near the aperture to reject >90% of the protons, avoiding damage to the target. Another set of grids and applied voltages are used to accelerate and focus the remaining ions to implant into the target. The design uses an energy-independent parabolic ion mirror to focus ions onto a 6.2 cm diameter target of materials selected to contain levels of O and other elements of interest established and documented to be below 10% of the levels expected from the concentrated solar wind. To optimize the concentration of the ions, voltages are constantly adjusted based on real-time solar wind speed and temperature measurements from the Genesis ion monitor. Construction of the Concentrator required new developments in ion optics; materials; and instrument testing and handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barraclough, B. L., Dors, E. E., Abeyta, R. A., Alexander, J. F., Ameduri, F. P., Baldonado, J. R., Bame S. J., Casey P. J., Dirks, G., Everett D. T., Gosling, J. T., Grace, K. M., Guerrero, D. R., Kolar, J. D., Kroesche, J., Lockhart, W., McComas, D. J., Mietz, D. E., Roese, J., Sanders, J., Steinberg, J. T., Tokar, R. L., Urdiales, C., and Wiens, R. C.: 2003, 'The Plasma Ion and Electron Instruments for the Genesis Mission', Space Sci. Rev., this volume.

  • Bochsler, P.: 2000, 'Abundances and Charge States of Particles in the Solar Wind', Rev. Geophys. 38(2), 247–266.

    Article  ADS  Google Scholar 

  • Bochsler, P. and Geiss, J.: 1989, 'Composition of the Solar Wind', in J. H. Waite, Jr., J. L. Burch, and R. L. Moore (eds.), Solar System Plasma Physics, Geophysical Monograph 54 pp. 133–141.

  • Bodmer, R. and Boschler, P.: 2000, 'Influence of Coulomb Collisions on Isotopic and Elemental Fractionation in the Solar Wind Acceleration Process', J. Geophys. Res. 105(A1), 47–60.

    Article  ADS  Google Scholar 

  • Bühler, F., Eberhardt, P., Geiss, J., Miester, J., and Signer, P.: 1969, 'Apollo 11 Solar Wind Composition Experiment: First Results', Science 166, 1502–1503.

    ADS  Google Scholar 

  • Bühler, F., Geiss, J., Miester, J., Eberhardt, P., Huneke, J. C., and Signer, P.: 1966, 'Trapping of the Solar Wind in Solids', Earth Planetary Sci. Lett. 1, 249–255.

    Article  ADS  Google Scholar 

  • Burnett, D. S., Barraclough, B. L., Bennett, R., Neugebauer, M., Oldham, L. P., Sasaki, C. N., Sevilla, D., Smith, N., Stansbery, E., Sweetnam, D., and Wiens, R. C.: 2003, 'The Genesis Discovery Mission: Return of solar matter to Earth', Space Sci. Rev., this volume.

  • Clayton, R. N.: 1993, 'Oxygen Isotopes in Meteorites', Ann. Rev. Earth Planetary Sci. 21, 115–149.

    Article  MathSciNet  ADS  Google Scholar 

  • Collier, M. R., Hamilton, D. C., Gloeckler, G., Ho, G., Bochsler, P., Bodmer, R., and Sheldon, R.: 1998, 'Oxygen 16 to Oxygen 18 Abundance Ratio in the Solar Wind Observed by WIND/MASS', J. Geophys. Res. 103, 7.

    Article  ADS  Google Scholar 

  • Geiss, J., Eberhardt, P., Signer, P., Bühler, R., and Meister, J.: 1969, 'The Solar Wind Composition Experiment', Section 8 of Apollo 11 Preliminary Science Report, NASA SP-214, pp. 183–186.

  • Geiss, J., Eberhardt, P., Bühler, R., Meister, J., and Signer, P.: 1970, 'Apollo 11 and 12 Solar Wind Composition Experiments: Fluxes of He and Ne Isotopes, J. Geophys. Res. 75, 5972–5979.

    Article  ADS  Google Scholar 

  • Geiss, J., Bühler, R., Cerutti, H., Eberhardt, P., and Filleux, Ch.: 1972, 'Solar Wind Composition Experiment', Apollo 14 Preliminary Science Report, NASA SP-315, 14–1–14–10.

  • Harris, M. J., Lambert, D. L., and Goldman, A.: 1987, 'Carbon and Oxygen Isotope Ratios in the Solar Photosphere', Monthly Notices Roy. Astron. Soc. 224, 237.

    ADS  Google Scholar 

  • Jurewicz, A. J. G., Burnett, D. S., Wiens, R. C., Friedmann, T. A., Hays, C. C., Hohlfelder, R. J., Nishiizumi, K., Stone, J. A., Woolum, D. S., Becker, R., Butterworth, A. L., Campbell, A. J., Ebihara, M., Franchi, I. A., Heber, V., Hohenberg, C. M., Humayun, M., McKeegan, K. D., McNamara, K., Meshik, A., Pepin, R. O., Schlutter, D., and Wieler, R.: 2003, 'Overview of the Genesis Solar-Wind Collector Materials', Space Sci. Rev., this volume.

  • Kallenbach, R., Geiss, J., Ipavich, F. M., Gloeckler, G., Bochsler, P., Gliem, F., Hefti, S., Hilchenbach, M., and Hovestadt, D.: 1998, 'Isotopic Composition of Solar Wind Nitrogen: First in situ determination with the CELIAS/MTOF spectrometer on board SOHO', Astrophys. J. 507(2), L185-L188.

    Article  ADS  Google Scholar 

  • Kallenbach, R., Ipavich, F. M, Bochsler, P., Hefti, S., Hovestadt, D., Grunwaldt, H., Hilchenbach, M., Axford, W. I., Balsiger, H., and Burgi, A.: 1997, 'Isotopic Composition of Solar Wind Neon Measured by CELIAS/MTOF on board SOHO', J. Geophys. Res. Space Phys. 102, 26895–26904.

    Article  ADS  Google Scholar 

  • McComas, D. J. et al.: 1998, 'Solar Wind Concentrator', in R. F. Pfaff, J. E. Borvsky, and D. T. Young (eds.), Measurement Techniques for Space Plasmas, AGU Monograph 102, pp. 195–200.

  • Neugebauer, M., Steinberg J. T., Tokar R. L., Barraclough B. L., Dors E. E., Wiens R. C., Gingerich D. E., Luckey D., and Whiteaker D. B.: 2003, 'Genesis On-Board Determination of the Solar Wind Flow Regime', Space Sci. Rev., this volume.

  • Pepin, R. O.: 1991, 'On The Origin And Early Evolution Of Terrestrial Planet Atmospheres And Meteoritic Volatiles', Icarus 92(1), 2–79.

    Article  ADS  Google Scholar 

  • Signer, P., Eberhardt, P., and Geiss, J.: 1965, 'Possible Determination of the Solar Wind Composition', J. Geophys. Res 70(9), 2243–2244.

    ADS  Google Scholar 

  • Wiens, R. C., Huss, G. R., and Burnett, D. S.: 1999, 'The Solar Oxygen-Isotopic Composition: Predictions and Implications for Solar Nebula Processes', Meteorol. Planetary Sci. 34, 99.

    Article  ADS  Google Scholar 

  • Wiens, R. C., Neugebauer, M., Reisenfeld, D. B., Moses, R. W., Jr., and Nordholt, J. E., Burnett, D. S.: 2003, 'Genesis Solar Wind Concentrator: Computer Simulations of Performance under Solar Wind Conditions', Space Sci. Rev., this volume.

  • Wimmer-Schweingruber, R. F., Bochsler, P., and Gloeckler G.: 2001, 'The Isotopic Composition of Oxygen in the Fast Solar Wind: ACE/SWIMS', Geophys. Res. Lett. 28(14), 2763–2766.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordholt, J.E., Wiens, R.C., Abeyta, R.A. et al. The Genesis Solar Wind Concentrator. Space Science Reviews 105, 561–599 (2003). https://doi.org/10.1023/A:1024422011514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024422011514

Keywords

Navigation