Skip to main content
Log in

Optimization of the Materials Composition in External Core Catchers for Nuclear Reactors

  • Published:
Atomic Energy Aims and scope

Abstract

Existing schemes of core melt retention apparatus for water-cooled water-moderated nuclear reactors are analyzed. In-shaft variants of melt catchers at nuclear power plants with VVÉR-1000 reactors are proposed. It is shown that TiO2- and Nd2O3-based materials increase the operational reliability of the retention apparatus by modifying the processes occurring in the melt and by preserving the integrity of refractory coatings consisting of zirconium dioxide. TiO2-based material not only decreases the effect of the melt on the refractory but also confines some fission products in geologically similar matrices which are synthesized as the melt cools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. I. Repin, V. G. Fedorov, V. I. Prudnikov, et al., “Apparatus for preventing penetration of nuclear reactor core melt into soil,” Russian Federation Patent No. 2119200 (1998).

  2. M. Fischer, “Main conceptual features of the EPR melt retention concept,” in: Proceedings of the OECD Workshop on Ex-Vessel Debris Coolability, Karlsruhe, Germany, November 15–18, 1999, pp. 508–517.

  3. A. S. Sidorov, G. E. Nosenko, V. S. Granovskii, et al., “System for protecting the shell of a water-moderated water-cooled type reactor,” Russian Federation Patent 2122246 (1998).

  4. G. Fieg, M. Moschke, and H. Werle, “Studies for staggered pans core catcher,” Nucl. Tech., 111, 331–340 (1995).

    Google Scholar 

  5. I. V. Kukhtevich, V. V. Bezlepkin, V. B. Khabenskii, et al., “Concept for core melt retention at the ex-vessel stage of an unanticipated accident at a nuclear power plant with VVÉR-1000 reactor,” Teploénerget., No. 9, 2–7 (2001).

  6. V. N. Mineev, F. A. Akopov, A. A. Akopyan, et al., “Interaction of oxide melt with zirconium-dioxide refractories in an external catcher,” At. Énerg., 90, No. 6, 460–466 (2001).

    Google Scholar 

  7. V. N. Mineev, F. A. Akopov, A. A. Akopyan, et al., “Interaction of metallic melt with zirconium dioxide refractories in an external catcher,” At. Énerg., 91, No. 1, 27–35.

  8. F. A. Akopov, A. S. Vlasov, L. A. Dombrovskii, et al., “Questions concerning the thermal state of an external core catcher and choosing the optimal catcher structure,” Inzh.-Fiz. Zh., 75, No. 1, 3–8 (2002).

    Google Scholar 

  9. A. S. Sidorov, A. B. Nedorezov, M. F. Rogov, et al, “Melt retention system at the Tian Wan nuclear power plant,” Teploénerget., No. 9, 8–13 (2001).

  10. L. Barleon, S. Dorner, O. Goetzmann, et al., “Nuclear reactor core catching apparatus,” US Patent 4073682 (1978).

  11. D. Bittermann, M. Fischer, and H. Alsmeyer, “Device for collecting and cooling a melt,” Patent WO00/31746, Germany (2000).

  12. F. A. Akopov, A. A. Akopyan, B. M. Barykin, et al., “Interaction of oxide components of core melt with hafnium-dioxide and zirconium-dioxide ceramic,” At. Énerg., 84, No. 4, 318–322 (1998).

    Google Scholar 

  13. F. A. Akopov, A. A. Akopyan, B. M. Barykin, et al., “Interaction of melt components with zirconium-dioxide ceramic,” At. Énerg., 81, No. 5, 468–471 (1996).

    Google Scholar 

  14. A. A. Khrulev, O. M. Traktuev, V. N. Mineev, et al., “Core melt catcher of a nuclear reactor,” Patent No. 2169953, Russian Federation (2001).

  15. M. Nie, “Application of sacrificial concrete for retention and conditioning of molten corium in EPR melt retention concept,” in: Proceedings of OECD Workshop on Ex-Vessel Degree Coolability, Karlsruhe, November 15–18, 1999, pp. 527–534.

  16. M. Dalle, S. Donner, and G. Schumacher, “Preliminary design of barax internal core-catcher for a gas cooled fast reactor,” in: Gesellschaft für Kernforschung GmbH, Karlsruhe, Vol. 33 (1944).

  17. A. Ringwood, Safe Disposal of High Level Reactor Wastes: A New Strategy, ANU Press, Canberra (1978).

    Google Scholar 

  18. V. N. Mineev, O. M. Traktyev, F. A. Akopov, et al., “Core melt catcher of a nuclear reactor,” Russian Federation Patent 2187852 (2002).

  19. F. A. Akopov, A. A. Akopyan, V. M. Barikin, et al., “Sacraficial layer materials complex usage for immobilization of high level nuclear wastes,” in: Proceedings of OECD Workshop on Ex-Vessel Degree Coolability, Karlsruhe, November 15–18, 1999, pp. 557–566.

  20. É. M. Glagovskii, A. V. Kuprin, L. N. Pelevin, et al., “Immobilization of high level wastes in stable mineral-like materials under the conditions of self-propagating high-temperature synthesis,” At. Énerg., 87, No. 1, 57–61 (1999).

    Google Scholar 

  21. F. A. Akopov, A. A. Akopyan, B. M. Barykin, et al., “Behavior of plasma-spray zirconium-dioxide ceramic under thermochemical action of core melt components,” At. Énerg., 81, No. 2, 115–119 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mineev, V.N., Akopov, F.A., Vlasov, A.S. et al. Optimization of the Materials Composition in External Core Catchers for Nuclear Reactors. Atomic Energy 93, 872–879 (2002). https://doi.org/10.1023/A:1022451520006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022451520006

Keywords

Navigation