Skip to main content
Log in

cDNA Microarray Analysis of Changes in Gene Expression Induced by Neuronal Hypoxia in Vitro

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We used cDNA microarray gene expression profiling to characterize the transcriptional response to exposure of cultured mouse cerebral cortical neurons to hypoxia for 24 hr. Of 11,200 genes examined, 1,405 (12.5%) were induced or repressed at least 1.5-fold, whereas 26 known genes were induced and 20 known genes were repressed at least 2.5-fold. The most strongly induced genes included genes coding for endoplasmic reticulum proteins (Ero1L/Giig11, Sac1p, Ddit3/Gadd153), proteins involved in ubiquitination (Arih2, P4hb), proteins induced by hypoxia in non-neuronal systems (Gpi1, Aldo1, Anxa2, Hig1), and proteins that might promote cell death (Gas5, Egr1, Ndr1, Vdac2). These findings reinforce the importance of endoplasmic reticulum-based mechanisms and of protein-ubiquitination pathways in the neuronal response to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bronner, L. L., Kanter, D. S., and Manson, J. E. 1995. Primary prevention of stroke. N. Engl. J. Med. 333:1392-1400.

    Google Scholar 

  2. Brott, T. and Bogousslavsky, J. 2000. Treatment of acute ischemic stroke. N. Engl. J. Med. 343:710-722.

    Google Scholar 

  3. Koistinaho, J. and Hökfelt, T. 1997. Altered gene expression in brain ischemia. Neuroreport 8:i-viii.

    Google Scholar 

  4. Chen, J., Graham, S. H., Chan, P. H., Lan, J., Zhou, R. L., and Simon, R. P. 1995. bc1-2 is expressed in neurons that survive focal ischemia in the rat. Neuroreport 6:394-398.

    Google Scholar 

  5. Chen, J., Zhu, R. L., Nakayama, M., Kawaguchi, K., Jin, K., Stetler, R. A., Simon, R. P., and Graham, S. H. 1996. Expression of the apoptosis-effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia. J. Neurochem. 67:64-71.

    Google Scholar 

  6. Chen, J., Nagayama, T., Jin, K., Stetler, R. A., Zhu, R. L., Graham, S. H., and Simon, R. P. 1998. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci. 18:4914-4928.

    Google Scholar 

  7. Graham, S. H. and Chen, J. 2001. Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 21:99-109.

    Google Scholar 

  8. Sharp, F. R., Lu, A., Tang, Y., and Millhorn, D. E. 2000. Multiple molecular penumbras after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20:1011-1032.

    Google Scholar 

  9. Sperandio, S., de Belle, I., and Bredesen, D. E. 2000. An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA 97:14376-14381.

    Google Scholar 

  10. Greenberg, S. A. 2001. DNA microarray gene expression analysis technology and its application to neurological disorders. Neurology 57:755-761.

    Google Scholar 

  11. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. 1999. Expression profiling using cDNA microarrays. Nat. Genet. 21:10-14.

    Google Scholar 

  12. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. 1999. High density synthetic oligonucleotide arrays. Nat. Genet. 21:20-24.

    Google Scholar 

  13. Lee, C. K., Klopp, R. G., Weindruch, R., and Prolla, T. A. 1999. Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390-1393.

    Google Scholar 

  14. Heller, R. A., Schena, M., Chai, A., Shalon, D., Bedilion, T., Gilmore, J., Woolley, D. E., and Davis, R. W. 1997. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. USA 94:2150-2155.

    Google Scholar 

  15. Clark, E. A., Golub, T. R., Lander, E. S., and Hynes, R. O. 2000. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532-535.

    Google Scholar 

  16. Sandberg, R., Yasuda, R., Pankratz, D. G., Carter, T. A., Del Rio, J. A., Wodicka, L., Mayford, M., Lockhart, D. J., and Barlow, C. 2000. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl. Acad. Sci. USA 97:11038-11043.

    Google Scholar 

  17. Malaspina, A., Kaushik, N., and de Belleroche, J. 2001. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J. Neurochem. 77:132-145.

    Google Scholar 

  18. Whitney, L. W., Becker, K. G., Tresser, N. J., Caballero-Ramos, C. I., Munson, P. J., Prabhu, V. V., Trent, J. M., McFarland, H. F., and Biddison, W. E. 1999. Analysis of gene expression in multiple sclerosis lesions using cDNA microarrays. Ann. Neurol. 46:425-428.

    Google Scholar 

  19. Ginsberg, S. D., Hemby, S. E., Lee, V. M., Eberwine, J. H., and Trojanowski, J. Q. 2000. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann. Neurol. 48:77-87.

    Google Scholar 

  20. Stanton, L. W., Garrard, L. J., Damm, D., Garrick, B. L., Lam, A., Kapoun, A. M., Zheng, Q., Protter, A. A., Schreiner, G. F., and White, R. T. 2000. Altered patterns of gene expression in response to myocardial infarction. Circ. Res. 86:939-945.

    Google Scholar 

  21. Sehl, P. D., Tai, J. T., Hillan, K. J., Brown, L. A., Goddard, A., Yang, R., Jin, H., and Lowe, D. G. 2000. Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation 101: 1990-1999.

    Google Scholar 

  22. Soriano, M. A., Tessier, M., Certa, U., and Gill, R. 2000. Parallel gene expression monitoring using oligonucleotide probe arrays of multiple transcripts with an animal model of focal ischemia. J. Cereb. Blood Flow Metab. 20:1045-1055.

    Google Scholar 

  23. Jin, K. L., Mao, X. O., Eshoo, M. W., Nagayama, T., Minami, M., Simon, R. P., and Greenberg, D. A. 2001. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann. Neurol. 50:93-103.

    Google Scholar 

  24. Li, W., Jin, K., Nagayama, T., He, X., Chang, J., Minami, M., Graham, S. H., Simon, R. P., and Greenberg, D. A. 2000. Increased expression of apoptosis-linked gene 2 (ALG2) in the rat brain after temporary focal cerebral ischemia. Neuroscience 96: 161-168.

    Google Scholar 

  25. Jin, K., Li, W., Nagayama, T., He, X., Sinor, A. D., Chang, J., Mao, X., Graham, S. H., Simon, R. P., and Greenberg, D. A. 2000. Expression of the RNA-binding protein TIAR is increased in neurons after ischemic cerebral injury. J. Neurosci. Res. 59: 767-774.

    Google Scholar 

  26. Jin, K. L., Mao, X. O., Goldsmith, P. C., Nagayama, T., and Greenberg, D. A. 2000. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1a by global ischemia in rat brain. Neuroscience 99:577-585.

    Google Scholar 

  27. del Rio, G., Bartley, T. F., del-Rio, H., Rao, R., Jin, K. L., Greenberg, D. A., Eshoo, M., and Bredesen, D. E. 2001. Mining DNA microarray data using a novel approach based on graph theory. FEBS Lett. 509:230-234.

    Google Scholar 

  28. Hou, S. T., Callaghan, D., Fournier, M. C., Hill, I., Kang, L., Massie, B., Morley, P., Murray, C., Rasquinha, I., Slack, R., and MacManus, J. P. 2000. The transcription factor E2F1 modulates apoptosis of neurons. J. Neurochem. 75:91-100.

    Google Scholar 

  29. Osuga, H., Osuga, S., Wang, F., Fetni, R., Hogan, M. J., Slack, R. S., Hakim, A. M., Ikeda, J. E., and Park, D. S. 2000. Cyclindependent kinases as a therapeutic target for stroke. Proc. Natl. Acad. Sci. USA 97:10254-10259.

    Google Scholar 

  30. MacManus, J. P., Koch, C. J., Jian, M., Walker, T., and Zurakowski, B. 1999. Decreased brain infarct following focal ischemia in mice lacking the transcription factor E2F1. Neuroreport 10:2711-2714.

    Google Scholar 

  31. Tang, Y., Lu, A., Aronow, B. J., and Sharp, F. R. 2001. Blood genomic responses differ following stroke, seizures, hypoglycemia and hypoxia: blood genomic fingerprints of disease. Ann. Neurol. 50:699-707.

    Google Scholar 

  32. Koretz, B., Ahern, K. v. B., Lustig, H. S., and Greenberg, D. A. 1994. Pre-and postsynaptic modulators of excitatory neurotransmission: comparative effects on hypoxia/hypoglycemia in cortical cultures. Brain Res. 643:334-337.

    Google Scholar 

  33. Jin, K. L., Mao, X. O., and Greenberg, D. A. 2000. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc. Natl. Acad. Sci. USA 97:10242-10247.

    Google Scholar 

  34. Sun, Y., Jin, K., Mao, X. O., Zhu, Y., and Greenberg, D. A. 2001. Neuroglobin is upregulated by and protects neurons from hypoxic-ischemic injury. Proc. Natl. Acad. Sci. USA 98:15306-15311.

    Google Scholar 

  35. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.

    Google Scholar 

  36. Ferri, K. F. and Kroemer, G. 2001. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3:E255-E263.

    Google Scholar 

  37. Paschen, W. and Frandsen, A. 2001. Endoplasmic reticulum dysfunction-a common denominator for cell injury in acute and degenerative diseases of the brain? J. Neurochem. 79:719-725.

    Google Scholar 

  38. Ma, Y. and Hendershot, L. M. 2001. The unfolding tale of the unfolded protein response. Cell 107:827-830.

    Google Scholar 

  39. Cabibbo, A., Pagani, M., Fabbri, M., Rocchi, M., Farmery, M. R., Bulleid, N. J., and Sitia, R. 2000. ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J. Biol. Chem. 275:4827-4833.

    Google Scholar 

  40. Nemoto, Y., Kearns, B. G., Wenk, M. R., Chen, H., Mori, K., Alb, J. G., Jr., De Camilli, P., and Bankaitis, V. A. 2000. Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J. Biol. Chem. 275:34293-34305.

    Google Scholar 

  41. Lin, T. N., Liu, T. H., Xu, J., Hsu, C. Y., and Sun, G. Y. 1991. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex. Stroke 22:495-498.

    Google Scholar 

  42. Ron, D. and Habener, J. F. 1992. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6:439-453.

    Google Scholar 

  43. Sutter, C. H., Laughner, E., and Semenza, G. L. 2000. Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc. Natl. Acad. Sci. USA 97:4748-4753.

    Google Scholar 

  44. Ardley, H. C., Tan, N. G., Rose, S. A., Markham, A. F., and Robinson, P. A. 2001. Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulate its interaction with the ubiquitinconjugating enzyme, Ubch7. J. Biol. Chem. 276:19640-19647.

    Google Scholar 

  45. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468-472.

    Google Scholar 

  46. Yoon, D. Y., Buchler, P., Saarikoski, S. T., Hines, O. J., Reber, H. A., and Hankinson, O. 2001. Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 288:882-886.

    Google Scholar 

  47. Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., and Giallongo, A. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271:32529-32537.

    Google Scholar 

  48. Eberhard, D. A., Brown, M. D., and VandenBerg, S. R. 1994. Alterations of annexin expression in pathological neuronal and glial reactions. Immunohistochemical localization of annexins I, II (p36 and p11 subunits), IV, and VI in the human hippocampus. Am. J. Pathol. 145:640-649.

    Google Scholar 

  49. Del Sal, G., Ruaro, M. E., Philipson, L., and Schneider, C. 1992. The growth arrest-specific gene, gas1, is involved in growth suppression. Cell 70:595-607.

    Google Scholar 

  50. Mataga, N., Fujishima, S., Condie, B. G., and Hensch, T. K. 2001. Experience-dependent plasticity of mouse visual cortex in the absence of the neuronal activity-dependent marker egr1/ zif268. J. Neurosci. 21:9724-9732.

    Google Scholar 

  51. Kalaydjieva, L., Gresham, D., Gooding, R., Heather, L., Baas, F., de Jonge, R., Blechschmidt, K., Angelicheva, D., Chandler, D., Worsley, P., Rosenthal, A., King, R. H., and Thomas, P. K. 2000. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am. J. Genet. 67:47-58.

    Google Scholar 

  52. Shimizu, S., Narita, M., and Tsujimoto, Y. 1999. Bc1-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483-487.

    Google Scholar 

  53. Perez Velazquez, J. L., Frantseva, M. V., Huzar, D. V., and Carlen, P. L. 2000. Mitochondrial porin required for ischemiainduced mitochondrial dysfunction and neuronal damage. Neuroscience 97:363-369.

    Google Scholar 

  54. Lu, Y., Brush, J., and Stewart, T. A. 1999. NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway. J. Biol. Chem. 274:10047-10052.

    Google Scholar 

  55. Hayashi, T., Sakai, K., Sasaki, C., Zhang, W. R., Warita, H., and Abe, K. 2000. c-Jun N-terminal kinase (JNK) and JNK interacting protein response in rat brain after transient middle cerebral artery occlusion. Neurosci. Lett. 284:195-199.

    Google Scholar 

  56. Singh, J., Itahana, Y., Parrinello, S., Murata, K., and Desprez, P. Y. 2001. Molecular cloning and characterization of a zinc finger protein involved in Id-1-stimulated mammary epithelial cell growth. J. Biol. Chem. 276:11852-11858.

    Google Scholar 

  57. Ren, Y., Busch, R. K., Perlaky, L., and Busch, H. 1998. The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. Eur. J. Biochem. 253:734-742.

    Google Scholar 

  58. Naruhashi, K., Kadomatsu, K., Igakura, T., Fan, Q. W., Kuno, N., Muramatsu, H., Miyauchi, T., Hasegawa, T., Itoh, A., Muramatsu, T., and Nabeshima, T. 1997. Abnormalities of sensory and memory functions in mice lacking Bsg gene. Biochem. Biophys. Res. Commun. 236:733-737.

    Google Scholar 

  59. Veerkamp, J. H. and Zimmerman, A. W. 2001. Fatty acid-binding proteins of nervous tissue. J. Mol. Neurosci. 16:133-142.

    Google Scholar 

  60. Takiguchi-Hayashi, K. 2001. In vitro clonal analysis of rat cerebral cortical neurons expressing latexin, a subtype-specific molecular marker of glutamatergic neurons. Dev. Brain Res. 132: 87-90.

    Google Scholar 

  61. Price, M. P., Snyder, P. M., and Welsh, M. J. 1996. Cloning and expression of a novel human brain Na1 channel. J. Biol. Chem. 271:7879-7882.

    Google Scholar 

  62. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. 2000. Caspase-12 mediates endoplasmicreticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98-103.

    Google Scholar 

  63. Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., and Bredesen, D. E. 2001. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 276:33869-33874.

    Google Scholar 

  64. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., and Holbrook, N. J. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bc12 and perturbing the cellular redox state. Mol. Cell Biol. 21:1249-1259.

    Google Scholar 

  65. Semenza, G. L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13:167-171.

  66. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., and Kaelin, W. G., Jr. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464-468.

    Google Scholar 

  67. Lopez-Barneo, J., Pardal, R., and Ortega-Saenz, P. 2001. Cellular mechanisms of oxygen sensing. Annu. Rev. Physiol. 63: 259-287.

    Google Scholar 

  68. Lok, C. N. and Ponka, P. 1999. Identification of a hypoxia response element in the transferrin receptor gene. J. Biol. Chem. 274:24147-24152.

    Google Scholar 

  69. Kimura, H., Weisz, A., Ogura, T., Hitomi, Y., Kurashima, Y., Hashimoto, K., D'Acquisto, F., Makuuchi, M., and Esumi, H. 2001. Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J. Biol. Chem. 276: 2292-2298.

    Google Scholar 

  70. Sinor, A. D. and Greenberg, D. A. 2000. Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neurosci. Lett. 290:213-215.

    Google Scholar 

  71. Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., Van Dorpe, J., Hellings, P., Gorselink, M., Heymans, S., Theilmeier, G., Dewerchin, M., Laudenbach, V., Vermylen, P., Raat, H., Acker, T., Vleminckx, V., Van Den Bosch, L., Cashman, N., Fujisawa, H., Drost, M. R., Sciot, R., Bruyninckx, F., Hicklin, D. J., Ince, C., Gressens, P., Lupu, F., Plate, K. H., Robberecht, W., Herbert, J.-M., Collen, D., and Carmeliet, P. 2001. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28:131-138.

    Google Scholar 

  72. Halterman, M. W. and Federoff, H. J. 1999. HIF-1a and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp. Neurol. 159:65-72.

    Google Scholar 

  73. Halterman, M. W., Miller, C. C., and Federoff, H. J. 1999. Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J. Neurosci. 19:6818-6824.

    Google Scholar 

  74. Bergeron, M., Yu, A. Y., Solway, K. E., Semenza, G. L., and Sharp, F. R. 1999. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur. J. Neurosci. 11:4159-4170.

    Google Scholar 

  75. Bernaudin, M., Marti, H. H., Roussel, S., Divoux, D., Nouvelot, A., MacKenzie, E. T., and Petit, E. 1999. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 19:643-651.

    Google Scholar 

  76. Lennmyr, F., Ata, K. A., Funa, K., Olsson, Y., and Terent, A. 1998. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J. Neuropathol. Exp. Neurol. 57:874-882.

    Google Scholar 

  77. Cobbs, C. S., Chen, J., Greenberg, D. A., and Graham, S. H. 1998. Vascular endothelial growth factor expression in rat focal cerebral ischemia. Neurosci. Lett. 249:79-82.

    Google Scholar 

  78. Greenberg, D. A. 2001. Microarrays, markers of disease, and the myth of “nonhypothesis-driven” research. Ann. Neurol. 50: 695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, K., Mao, X.O., Eshoo, M.W. et al. cDNA Microarray Analysis of Changes in Gene Expression Induced by Neuronal Hypoxia in Vitro . Neurochem Res 27, 1105–1112 (2002). https://doi.org/10.1023/A:1020913123054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020913123054

Navigation