Skip to main content
Log in

Sequestration of Glucosinolates by Harlequin Bug Murgantia histrionica

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Murgantia histrionica, the harlequin bug, is an aposematic pentatomid that feeds on toxic crucifer plants. By performing predator trials, we found that the bugs are distasteful to several species of bird predators. Given this, we tested the hypothesis that the bugs sequester toxins from the crucifer plants they feed on for use in defense against predation. We used high-pressure liquid chromatography for analyses and tested if M. histrionica sequesters toxic chemicals from its crucifer diet. We found that M. histrionica sequesters mustard oil glycosides, precursors to zootoxic mephitic nitriles, and that sequestration is characteristic of the plant species fed upon. Glucosinolate titers in M. histrionica bodies were 20–30 times higher than in their guts. We found that cabbage-fed M. histrionica had higher titers of cabbage glucosinolates than bugs that were fed on a cabbage diet and then switched to a diet of garden nasturtium. This indicates that M. histrionica immediately sequesters chemicals from whichever plant it feeds upon. The study shows that M. histrionica can sequester glucosinolates from its host plants for use in defense against predation and that the bugs can retain the glucosinolates for an extended period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aldrich, J. R. 1988. Chemical ecology of the Heteroptera. Annu. Rev. Entomol. 33:211–238.

    Google Scholar 

  • Aldrich, J. R., Avery, J. W., Lee, C.-J., Graf, J. C., Harrison, D. J., and Bin, F. 1996. Semiochemistry of cabbage bugs (Heteroptera: Pentatmoidae: Eurydema and Murgantia). Entomol. Sci. 31:172–182.

    Google Scholar 

  • Aldrich, J. R., Schaefer, P.W., Oliver, J. E., Puapoomchareon, P., Lee, C.-J., and Vander meer, R. K. 1997. Biochemistry of the exocrine secretion from gypsy moth caterpillars (Lepidoptera: Lymantriidae). Physiol. Biochem. Toxicol. 90:75–82.

    Google Scholar 

  • Aliabadi, A. and Whitman, D. W. 2001. Semiochemistry of crucifers and their herbivores, pp. 71–93, in T. N. Ananthakrishnan (ed.). Insect and Plant Defense Dynamics. Oxford IBH Publishing, New Delhi.

    Google Scholar 

  • Alpin, R. T., Ward, D'arcy, and Rothschild, M. 1975. Examination of the large white and small white butterflies (Pieris spp.) for the presence of mustard oils and mustard oil glycosides. J. Entomol. (A) 50:73–79.

    Google Scholar 

  • Blum, M. S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.

    Google Scholar 

  • Bowers, M. D. 1990. Recycling plant natural products for insect defense, pp. 352–386, in D. L. Evans and J.O. Schmidt (eds.). Insect Defenses: Adaptative Mechanism and Strategies of Prey and Predators. State University of New York Press, Albany, New York.

    Google Scholar 

  • Bowers, M. D. and Stamp, N. E. 1997. Fate of host-plant iridoid glycosides in lepidopteran larvae of Nymphalidae and Arctiidae. J. Chem. Ecol. 23:2955–2965.

    Google Scholar 

  • Braekman, J. C., Daloze, D., and Pasteels, J. M. 1982. Cyanogenic and other plant glucosides in a New Guinea bug Leptocoris isolata: possible precursors in its host plant. Biochem. Syst. Ecol. 10:355–364.

    Google Scholar 

  • Brower, L. P. 1984. Chemical defense in butterflies, pp. 109–137, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. Academic Press, London.

    Google Scholar 

  • Coppinger, R. P. 1970. The effect of experience and novelty on avian feeding behavior with reference to the evolution of warning coloration in butterflies. II. Reactions of näýve birds to novel insects. Am. Nat. 104:323–335.

    Google Scholar 

  • Dobler, S., Daloze, D., and Pasteeles, J. M. 1998. Sequestration of plant compounds in a leaf beetle' defensive secretion: cardenolides in Chrysochus. Chemoecology8:111–118.

    Google Scholar 

  • Dobler, S., Haberer, W., Witte, L., and Hartmann, T. 2000. Selective sequestration of pyrrolizidine alkaloids from diverse host plants by Longitarsus flea beetles. J. Chem. Ecol. 26:1281–1298.

    Google Scholar 

  • Duffey, S. S. 1980. Sequestration of plant natural products by insects. Annu. Rev. Entomol. 25: 447–477.

    Google Scholar 

  • Duffey, S. S. and Scudder, G. G. E. 1972. Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly coloured Hemiptera and Coleoptera. J. Insect Physiol. 18:63–78.

    Google Scholar 

  • Fenwick, G. R., Heaney, R. K., and Mullin, W. J. 1983. Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci. Nutr. 18:123–201.

    Google Scholar 

  • Geuder, M., Wray, V., Fiedler, K., and Proksch, P. 1997. Sequestration and metabolism of hostplant flavonoids by the lycaenid butterfly Polyommatus bellargus. J. Chem. Ecol.23:1361–1372.

    Google Scholar 

  • Guilford, T. 1990. The evolution of aposematism, pp. 23–61, in D. L. Evans and J. O. S. Schmidt (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany, New York.

    Google Scholar 

  • Guilford, T., Nicol, C., Rothschild, M., and Moore, B. P. 1987. The biological roles of pyrazines: evidence for a warning odour function. Biol. J. Linn. Soc. 31:113–128.

    Google Scholar 

  • Kaye, H., Mackintosh, N. J., Rothschild, M., and Moore, B. P. 1989. Odour of pyrazine potentiates: an association between environmental cues and unpalatable taste. Anim. Behav. 37:563–568.

    Google Scholar 

  • Louda, S. and Mole, S. 1991. Glucosinolates: chemistry and ecology, pp. 123–164, in G. Rosenthal and M. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, San Diego, California.

    Google Scholar 

  • Ludwig, S.W. and Kok, L. T. 1998. Phenology and parasitism of harlequin bugs, Murgantia histrionica (Hahn) (Hemiptera: Pentatomidae), in southwest Virginia. J. Entomol. Sci. 33:33–39.

    Google Scholar 

  • McGavin, G. C. 1993. Bugs of the World. Facts on File, Inc., Hong Kong.

    Google Scholar 

  • McLain, D. K. 1984. Coevolution: Mullerian mimicry between a plant bug (Miridae) and a seed bug (Lygaeidae) and the relationship between host plant choice and unpalatability. Oikos 43:143–148.

    Google Scholar 

  • McLain, D. K. and Shure, D. J. 1985. Hostplant toxins and unpalatability of Neacoryphus bicrucis (Hemiptera: Lygaeidae). Ecol. Entomol. 10:291–298.

    Google Scholar 

  • McPherson, J. E. 1982. The Pentatomoidea (Hemiptera) of Northeastern North America with Emphasis on the Fauna of Illinois. Southern Illinois University Press, Carbondale, Illinois.

    Google Scholar 

  • McPherson, J. E. and McPherson, R. M. 2000. Stink Bugs of Economic Importance in America North of Mexico. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Metcalf, C. L., Flint, W. P., and Metcalf, R. L. 1962. Destructive and Useful Insects. McGrawHill, New York.

    Google Scholar 

  • Minchinton, I., Sang, J. Burk, D., and Truscott, R. J. W. 1982. Separation of desulphoglucosinolates by reversed-phase high performance liquid chromatography. J. Chromatogr. 247:141–148.

    Google Scholar 

  • Moore, B. P., Brown, W. V., and Rothschild, M. 1990. Methylalkylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology 1:43–51.

    Google Scholar 

  • MÜller, C., Agerbirk, N., Olsen, C. E., BoevÉ, J.-C., Schaffner, U., and Brakefield, P.M. 2001. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol.27:2505–2516.

    Google Scholar 

  • Pasteels, J. M., Gregoire, J.-C., and Rowell-Rahier, M. 1983. The chemical ecology of defense in arthropods. Annu. Rev. Entomol. 28:263–289.

    Google Scholar 

  • Pasteels, J. M., Daloze, D., and Rowell-Rahier, M. 1986. Chemical defense in chrysomelid eggs and neonate larvae. Physiol. Entomol. 11:29–37.

    Google Scholar 

  • Sargent, T. D. 1990. Startle as an anti-predator mechanism, with special reference to the underwing moths, (Catocala), pp. 229–249, in D. L. Evans and J. O. S. Schmidt (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany, New York.

    Google Scholar 

  • Schlenoff, D. H. 1984. Novelty: A basis for generalization in prey selection. Anim. Behav. 32: 919–921.

    Google Scholar 

  • Schuh, R. T. and Slater, J. A. 1995. True Bugs of the World. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Scudder, G.G. E. and Duffey, S. S. 1972. Cardiac glycosides in the Lygaeinae (Hemiptera: Lygeidae). Can. J. Zool. 50:35–42.

    Google Scholar 

  • Sime, K. R., Feeny, P. P., and Haribal, M. M. 2000. Sequestration of aristolochic acids by the pipevine swallowtail, Battus philenor (L.): evidence and ecological implications. Chemoecology 10:169–178.

    Google Scholar 

  • Von Euw, J., Reichstein, T., and Rothschild, M. 1971. Heart poisons (cardiac glycosides) in the lygaeid bugs Caenocoris nerli and Spilostethus pandurus. Insect Biochem.1:373–384a

    Google Scholar 

  • Walsh, B. J. 1866. The Texas cabbage bug. Pract. Entomol. 1:110.

    Google Scholar 

  • Whitman, D. W. 1988. Allelochemical interactions among plants, herbivores, and their predators, pp. 11–64, in P. Barbosa and D. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Whitman, D. W., Blum, M. S., and Jones, C. G. 1985. Chemical defense in Taeniopoda eques (Orthoptera: Acrididae): role of the metathoracic secretion. Ann. Entomol. Soc. Am. 78:451–455.

    Google Scholar 

  • Whitman, D. W., Blum, M. S., and Alsop, D. W. 1990. Allomones: chemicals for defense, pp. 288–351, in D. L. Evans and J. O. S. Schmidt (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany, New York.

    Google Scholar 

  • Wink, M., Grimm, C., Koschmieden, C., Sporer, F., and Bergeot, O. 2000. Sequestration of phorbolesters by the aposematically coloured bug Pachycoris klugii (Heteroptera: Scutelleridae) feeding on Jatropha curcas (Euphorbiaceae). Chemoecology 10:179–184.

    Google Scholar 

  • Zrybko, C. L. and Rosen, R. T. 1997. Determination of glucosinolates in mustard by high-performance liquid chromatography-electrospray mass spectrometry, pp. 125–137, in S. J. Risch, and C.-T. Ho (eds.). Spices: Flavor Chemistry and Antioxidant Properties. American Chemical Society, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Aliabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliabadi, A., Renwick, J.A.A. & Whitman, D.W. Sequestration of Glucosinolates by Harlequin Bug Murgantia histrionica . J Chem Ecol 28, 1749–1762 (2002). https://doi.org/10.1023/A:1020505016637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020505016637

Navigation