Skip to main content
Log in

The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Experiments initiated in the early 1960s on fermentative bacteria led to the discovery of ferredoxin-dependent alpha-ketocarboxylation reactions that were later found to be key to a new cycle for the assimilation of carbon dioxide in photosynthetic bacteria (the reductive carboxylic acid or reverse citric cycle). The latter finding set the stage for the discovery of a regulatory system, the ferredoxin/thioredoxin system, functional in photosynthesis in chloroplasts and oxygen-evolving photosynthetic prokaryotes. The chloroplast research led to a description of the extraplastidic NADP/thioredoxin system that is now known to function in heterotrophic plant processes such as seed germination and self-incompatibility. Extensions of the fundamental research have begun to open doors to the broad application of thioredoxin in technology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson LE and Avron M (1976) Light modulation of enzyme activity in chloroplasts. Generation of membrane-bound vicinal dithiol groups by photosynthetic electron transport. Plant Physiol 57: 209–213

    PubMed  CAS  Google Scholar 

  • Bachofen R, Buchanan BB and Arnon DI (1964) Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc Natl Acad Sci USA 51: 690–694

    Article  PubMed  CAS  Google Scholar 

  • Berstermann A, Vogt K and Follmann H (1983) Plant seeds contain several thioredoxins of regular size. Eur J Biochem 131: 339–44

    Article  PubMed  CAS  Google Scholar 

  • Besse I and Buchanan BB (1997) Thioredoxin-linked plant and animal processes: the new generation. Bot Bull Acad Sin (Taipei) 38: 1–11

    CAS  Google Scholar 

  • Besse I, Wong JH, Kobrehel K and Buchanan BB (1996) Thiocalsin: a thioredoxin-linked substrate-specific protease dependent on calcium. Proc Natl Acad Sci USA 93: 3169–3175

    Article  PubMed  CAS  Google Scholar 

  • Blackman FF (1905) Optima and limiting factors. Ann Bot 19:281–295

    Google Scholar 

  • Bower MS, Matias DD, Fernandes-Carvalho E, Mazzurco M, Gu T, Rothstein SJ and Goring DR (1996) Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase. Plant Cell 8: 1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Breazeale VD, Buchanan BB and Wolosiuk RA (1978) Chloroplast sedoheptulose 1,7-bisphosphatase: evidence for regulation by the ferredoxin/thioredoxin system. Z Naturforsch 33c: 521–528

    CAS  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes Annu Rev Plant Physiol 31: 341–374

    Article  CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB (2001) Thioredoxin: a photosynthetic regulatory protein finds application in food improvement. J Sci Food Agric 81: 1–8

    Article  Google Scholar 

  • Buchanan BB and Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24: 47–53

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB and Wolosiuk RA (1976) Photosynthetic regulatory protein found in animal and bacterial cells. Nature 264: 669–670

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Kalberer PP and Arnon DI (1967) Ferredoxinactivated fructose diphosphatase in isolated chloroplasts. Biochem Biophys Res Commun 29: 74–79

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Schürmann P and Kalberer PP (1971) Ferredoxinactivated fructose diphosphatase of spinach chloroplasts: resolution of the system, properties of the alkaline fructose diphosphatase component, and physiological significance of the ferredoxin-linked activation. J Biol Chem 246: 5952–5959

    PubMed  CAS  Google Scholar 

  • Buchanan BB, Wolosiuk RA, Crawford NA and Yee BC (1978) Evidence for three thioredoxins in leaves. Plant Physiol 61: 38s

    Article  Google Scholar 

  • Buchanan BB, Schürmann P, Decottignies P and Lozano RM(1994) Thioredoxin: a multifunctional regulatory protein with a bright future in technology and medicine. Arch Biochem Biophys 314: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, del Val G and Frick OL (1998) Alleviation of food allergies using a thioredoxin-based technology. Leatherhead Food RA Food Ind J 1: 97–105

    Google Scholar 

  • Cabrillac D, Cock JM, Dumas C and Gaude T. (2001) The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature 410: 220–223

    Article  PubMed  CAS  Google Scholar 

  • Carr PD, Verger D, Ashton AR, and Ollis DL (1999) Chloroplast NADP-malate dehydrogenase: structural basis of lightdependent regulation of activity by thiol oxidation and reduction. Structure 7: 461–475

    Article  PubMed  CAS  Google Scholar 

  • Chiadmi M, Navaza A, Miginiac-Maslow M, Jacquot J-P and Cherfils J (1999) Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase. EMBO J 18: 6809–6815

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Saarinen M, Ramaswamy S, Meyer Y, Jacquot J-P and Eklund H (1996) Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 Å resolution. J Mol Biol 264: 1044–1057

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Schwendtmayer C, Johansson K, Ramaswamy S, Schürmann P and Eklund H (2000a) How does light regulate chloroplast enzymes? Structure-function studies of the ferredoxin/thioredoxin system. Q Rev Biophys 33: 67–108

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S and Eklund H (2000b) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287: 655–658

    Article  PubMed  CAS  Google Scholar 

  • de la Torre A, Lara C, Yee BC, Malkin R and Buchanan BB (1982) Physiochemical properties of ferralterin, a regulatory iron-sulfur protein functional in oxygenic photosynthesis. Arch Biochem Biophys 213: 545–550

    Article  PubMed  CAS  Google Scholar 

  • Droux M, Jacquot J-P, Miginiac-Maslow M, Gadal P, Huet JC, Crawford NA, Yee BC and Buchanan BB (1987) Ferredoxinthioredoxin reductase (FTR): an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis. Purification and properties of the enzyme from C3, C4 and cyanobacterial species. Arch Biochem Biophys 252: 426–439

    Article  PubMed  CAS  Google Scholar 

  • EvansMCW, Buchanan BB and Arnon DI (1966) A new ferredoxindependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 53: 1420–1425

    Article  Google Scholar 

  • Florencio FJ, Yee BC and Buchanan BB (1988) A NADP/thioredoxin system in green leaves: purification and characterization of NADP/thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 266: 491–507

    Article  Google Scholar 

  • Follmann H and Häberlein I (1995-1996) Thioredoxins: universal, yet specific thiol-disulfide redox cofactors. Biofactors 5: 147–156

    PubMed  CAS  Google Scholar 

  • Ford DM, Jablonski PP, Mohamed AH and Anderson LE (1987) Protein modulase appears to be a complex of ferredoxin, ferredoxin/thioredoxin reductase and thioredoxin. Plant Physiol 83: 628–632

    PubMed  CAS  Google Scholar 

  • Hanson TE and Tabita FR (2001) A rubisco-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98: 4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Hartman H, Syvanen M and Buchanan BB (1990) Contrasting evolutionary histories of chloroplast thioredoxins f and m. Mol Biol Evol 7: 247–254

    PubMed  CAS  Google Scholar 

  • Hertig C and Wolosiuk RA (1980) A dual effect of Ca2+ on chloroplast fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 97: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Droux M, Gray KA, Boyer JM, Davis DJ, Buchanan BB and Knaff D (1988) Ferredoxin-thioredoxin reductased: properties of its complex with ferredoxin. Biochim Biophys Acta 935: 1–8

    Article  CAS  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54: 237–271

    Article  PubMed  CAS  Google Scholar 

  • Jacquot J-P, Lancelin JM and Meyer Y (1997) Thioredoxin: structure and function in plant cells. New Phytol 136: 543–570

    Article  CAS  Google Scholar 

  • Jacquot J-P, Rivera-Madrid R, Marinho P, Kollarova M, Le Maréchal P, Miginiac-Maslow M and Meyer Y (1994) Arabidopsis thaliana NADPH thioredoxin reductase cDNA characterization and expression of the recombinant protein in Escherichia coli. J Mol Biol 235: 1357–1763

    Article  PubMed  CAS  Google Scholar 

  • Jacquot J-P, Vidal J and Gadal P (1976) Identification of a protein factor involved in dithiothreitol activation of NADP-malate dehydrogenase. FEBS Lett 71: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Jacquot J-P, Vidal J, Gadal P and Schürmann P (1978) Evidence for the existence of several enzyme specific thioredoxins in plants FEBS Lett 96: 243–246

    Article  CAS  Google Scholar 

  • Johansson K, Ramaswamy S, Saarinen M, Lemaire-Chamley M, Issakidis-Bourguet E, Miginiac-Maslow M and Eklund H (1999) Structural basis for light activation of a chloroplast enzyme: the structure of sorghum NADP-malate dehydrogenase in its oxidized form. Biochemistry 38: 4319–4326

    Article  PubMed  CAS  Google Scholar 

  • Johnson TC, Cao RQ, Kung JE and Buchanan BB (1987) Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells. Planta 171: 321–331

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T and Hatch MD (1977) Regulation of C4 photosynthesis: characterization of a protein factor mediating the activation and inactivation of NADP-malate dehydrogenase. Arch Biochem Biophys 184: 290–297

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Rayapuram N, Chartier Y, Grienberger J-M, Bonnard G and Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci 98: 14144–14149

    Article  PubMed  CAS  Google Scholar 

  • Lara C, de la Torre A and Buchanan BB (1980) Ferralterin: an iron-sulfur protein functional in enzyme regulation in photosynthesis. Biochem Biophys Res Commun 94: 1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Li X, Paech N, Nield J, Hayman D and Langridge P (1997) Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses. Plant Mol Biol 34: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Lozano RM, Wong JH, Yee BC, Peters A, Kobrehel K and Buchanan BB (1996) New evidence for a role for thioredoxin h in germination and seedling development. Planta 200: 100–106

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM and Parker J (1997) Brock Biology of Micro-Organisms, 8th edition, pp 650–651. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Marcus F, Chamberlin SH, Chu C, Masiarz FR, Shin S, Yee BC and Buchanan BB (1991) Plant thioredoxin h: an animal like thioredoxin occurring in multiple cell compartments. Arch Biochem Biophys 287: 195–198

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Verdoucq L and Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci 4: 388–394

    Article  PubMed  Google Scholar 

  • Mittard V, Blackledge MJ, Stein M, Jacquot JP, Marion D and Lancelin JM (1997) NMR solution structure of an oxidised thioredoxin h from the eukaryotic green alga Chlamydomonas reinhardtii. Eur J Biochem 243: 374–383

    Article  PubMed  CAS  Google Scholar 

  • Müller B, Ziegler I and Ziegler H (1969) Light-induced, reversible increase in the activity of NADP-glycerealdehyde-3-phosphate dehydrogenase in chloroplasts. On the mechanism of the reaction. Eur J Biochem 9: 101–106

    Article  PubMed  Google Scholar 

  • Motohashi K, Kondoh A, Stumpp MT and Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98: 11224–11229

    Article  PubMed  CAS  Google Scholar 

  • Mustacich D and Powis G. (2000) Thioredoxin reductase.Biochem J 346: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Nakamura K and Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15: 351–369

    Article  PubMed  CAS  Google Scholar 

  • Pedersen TA, Kirk M and Bassham JA (1966) Light-dark transients in levels of intermediate compounds during photosynthesis in air adapted Chlorella. Physiol Plant 19: 219–231

    Article  CAS  Google Scholar 

  • Ruelland E and Miginiac-Maslow M (1999) Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci 4: 136–141

    Article  PubMed  Google Scholar 

  • Scheibe R (1991) Redox-modulation of chloroplast enzymes-a common principle for individual control. Plant Physiol 26: 1–3

    Google Scholar 

  • Schürmann P (1983) The light activation of chloroplast enzymes through the ferredoxin/thioredoxin system. In: Metzner H (ed) Photosynthesis and Plant Productivity, pp 255–258. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Schürmann P and Buchanan BB (2001) The structure and function of the ferredoxin/thioredoxin system. In: Andersson B and Aro EM (eds) Regulatory Aspects of Photosynthesis. Advances in Photosynthesis, Vol 11, pp 331–361. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Schürmann P and Jacquot JP (2000) Plant thioredoxin system revisited. Annu Rev Plant Physiol Plant Mol Biol 51: 371–400

    Article  PubMed  Google Scholar 

  • Schürmann P and Kobayashi Y (1984) Regulation of chloroplast fructose 1,6-bisphosphatase activity by the ferredoxin/thioredoxin system. In: Sybesma C (ed) Advances in Photosynthesis Research, Vol 3, pp 629–632. Martinus Nijhoff/Dr W Junk Publishers, The Hague

    Google Scholar 

  • Schürmann P, Wolosiuk RA, Breazeale VD and Buchanan BB (1976) Two proteins function in the regulation of photosynthetic CO2 assimilation in chloroplasts. Nature 263: 257–258

    Article  Google Scholar 

  • Trebst AV, Tsujimoto HY and Arnon DI (1958) Separation of light and dark phases in the photosynthesis of isolated chloroplasts. Nature 182: 351–355

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Follmann H and Schmidt A (1978) Multiple forms of thioredoxins. Z Naturforsch Teil C 33: 517–520

    CAS  Google Scholar 

  • Wolosiuk RA and Buchanan BB (1977) Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266: 565–567

    Article  CAS  Google Scholar 

  • Wolosiuk RA, Crawford NA, Yee BC and Buchanan BB (1979) Isolation of three thioredoxins from spinach leaves. J Biol Chem 254: 1627–1632

    PubMed  CAS  Google Scholar 

  • Yano H, Wong JH, Lee YM, Cho MJ and Buchanan BB (2001) A strategy for the identification of proteins targeted by thioredoxin. Proc Natl Acad Sci USA 98: 4794–4799

    Article  PubMed  CAS  Google Scholar 

  • Ziegler H and Ziegler I (1965) The influence of light on the NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase. Planta 65: 369–380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob B. Buchanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchanan, B.B., Schürmann, P., Wolosiuk, R.A. et al. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynthesis Research 73, 215–222 (2002). https://doi.org/10.1023/A:1020407432008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020407432008

Navigation