Skip to main content
Log in

How Precisely Do Bonobos (Pan paniscus) Grasp Small Objects?

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The general objective of this study was to compare the precise grasping behavior and intermanual differences in performance between three Pan paniscus and five Homo sapiens in grasping small objects. We compared the temporal pattern of two submovements of consecutive grasping cycles, the (visuomotor) reaching and the (sensorimotor) grasping. Both species were similarly successful in this task, they showed a behavioral right-hand preference and preferred specific types of grips. Bonobos required less time for reaching an object but a much longer time to grasp it than humans did. Thus, the species pursued different strategies. We assumed that this might be due to the different grip techniques. However, grip preferences did not serve a quicker intramanual performance but they pronounced differences between hands. Intermanual differences in timing were restricted to the reaching part and more strongly in bonobos than in humans. However, the right hand need not necessarily perform quicker. As in the case of humans, we assume that attentional cues were focused more on preparing a proper grip with the right hand than on a quick performance. However, strong intermanual differences in bonobos may indicate an overall stronger neuronal asymmetry in the motor organization of the finger musculature that prepare a proper grip than is true of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Martin Giesel, Federico De Filippi & Constanze Hesse

REFERENCES

  • Annett, M. (1992). Five tests of hand skill. Cortex 28: 583-600.

    Google Scholar 

  • Arbib, M. A., Iberall, T., and Lyons D. (1985). Coordinated control programs of movements of the hand. In Goodwin, A. W., and Darian-Smith, I. (eds.), Hand Function and Neocortex. (Exp. Brain Res., Suppl. 10), Springer, Berlin, Heidelberg, New York, pp. 111-129.

    Google Scholar 

  • Boesch, C. (1991). Handedness in wild chimpanzees. Int. J. Primatol. 12: 541-558.

    Google Scholar 

  • Boesch, C., and Boesch, H. (1993). Different hand postures for pounding nuts with natural hammers by wild chimpanzees. In Preuschoft, H., and Chivers, D. J. (eds.), Hands of Primates. Springer, Wien, New York, pp. 91-108.

    Google Scholar 

  • Bortoff, G. A., and Strick, P. L. (1993). Corticospinal terminations in two new-world primates: Further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J. Neurosci. 13(12): 5105-5118.

    Google Scholar 

  • Brinkman, C. (1984). Supplementary motor area of monkey's cerebral cortex: Short and long term deficits after unilateral ablation and the effects of subsequent callosal section. J. Neurosci. 4: 918-929.

    Google Scholar 

  • Brinkman, J., and Kuypers, H. G. J. M. (1973). Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey. Brain 96: 653-674.

    Google Scholar 

  • Byrne, R. W., and Byrne, J. M. (1991). Complex leaf-gathering skills of mountain gorillas (Gorilla g. beringei): Variability and standardization. Am. J. Primatol. 31(4): 241-261.

    Google Scholar 

  • Christel, M. (1993a). Grasping techniques and hand preferences in hominoidea. In Preuschoft, H., and Chivers, D. J. (eds.), Hands of Primates, Springer, Wien, New York, pp. 91-108.

    Google Scholar 

  • Christel, M. (1993b). Greiftechniken und Handpräferenzen verschiedener catarrhiner Primaten beim Aufnehmen kleiner Objekte, Inaugural dissertation, FU Berlin.

  • Christel, M. I. (1994). Catarrhine primates grasping small objects—techniques and hand preferences. In Anderson, J. R., Roeder, J. J., Thierry, B., and Herrenschmidt, N. (eds.), Curr. Primatol., Vol. III. Behav. Neurosc. Physiol. Reprod., Université L. Pasteur, Strasbourg, pp. 37-50.

    Google Scholar 

  • Colell, M., Segarra, M. D., and Sabater-Pi, J. (1995). Manual laterality in chimpanzees (Pan troglodytes) in complex tasks. J. Comp. Psychol. 109(3): 298-307.

    Google Scholar 

  • Corballis, M. C. (1991). The Lopsided Ape: Evolution of the Generative Mind, Oxford University Press.

  • Darian-Smith, I., Galea, M. P., Darian-Smith, C., Sugitani, M., Tan, A., and Burman, K. (1996). In Beck, F., Kriz, W., Sano, Y., and Schiebler, T. H. (eds.), Advances in Anatomy Embryology and Cell Biology 133, Springer, Melbourne, Heidelberg, Kyoto, Würzburg.

    Google Scholar 

  • Day, M. H., and Napier, J. R. (1963). The functional significance of the head of the Flexor pollicis brevis in primates. Folia Primatol. 1: 122-134.

    Google Scholar 

  • Demes, B. (1991). Biomechanische Allometrie: Wie die Körpergröße Fortbewegung und Körperform von Primaten bestimmt. Cour. Forsch.-Inst. Senckenberg, Frankfurt.

  • Fagot, J., and Vauclair, J. (1991). Manual laterality in nonhuman primates: A distinction between handedness and manual specialization. Psychol. Bull., 109: 76-89.

    Google Scholar 

  • Fisk, J. D., and Goodale, M. A. (1985). The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. Exp. Brain Res. 60: 159-178.

    Google Scholar 

  • Finch, G. (1941). Chimpanzee handedness. Science 94: 117-118.

    Google Scholar 

  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of the movement. J. Exp. Psychol. 47: 381-391.

    Google Scholar 

  • Heffner, R., and Masterton, B. (1975). Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav. Evol. 12(3): 161-200.

    Google Scholar 

  • Hopkins, W. D. (1993). Posture and reaching in chimpanzees (Pan troglodytes) and orangutans (Pongo pygmaeus). J. Comp. Psych. 102: 248-250.

    Google Scholar 

  • Hopkins, W. D., and de Waal, F. B. M. (1995). Behavioral laterality in captive chimpanzees (Pan paniscus): Replication and extension. Int. J. Primatol. 16: 261-276.

    Google Scholar 

  • Hopkins, W. D., and Morris, R. D. (1993). Handedness in great apes: A review of findings. Int. J. Primatol. 14: 1-25.

    Google Scholar 

  • Hopkins, W. D., Bennett, A. J., Bales, S. L., Lee, J., and Ward, P. J. (1993). Behavioral laterality in captive bonobos (Pan paniscus). J. Comp. Psych. 107(40): 403-420.

    Google Scholar 

  • Igmanson, E. J. (1996). Hand-use preference among Pan paniscus at Wamba, Zaire. AAPA abstracts. Am. J. Phys. Anthropol. 22: 129.

    Google Scholar 

  • Jeannerod, M. (1984). The timing of natural prehension movements. J. Motiv. Behav. 16(3): 235-254.

    Google Scholar 

  • Jeannerod, M., Arbib, M. A., Rizzolatti, G., and Sakata, H. (1995). Grasping objects: The cortical mechanisms of visuomotor transformation. TINS 18(7): 314-320.

    Google Scholar 

  • Jones-Engel, L., and Bard, K. A. (1996). Precision grips in young chimpanzees. Am. J. Primatol. 39(2): 1-15.

    Google Scholar 

  • Kazennikov, O., Wicki, U., Corboz, M., Hyland, B., Palmeri, A., Rouiller, E. M., and Wiesendanger, M. (1994). Temporal structure of a bimanual goal-directed movement sequence in monkeys. Eur. J. Neurosci. 6: 203-210.

    Google Scholar 

  • Keele, S. W. (1968). Movement control in skilled motor performance. Psychol. Bull. 70: 387-404.

    Google Scholar 

  • Kuypers, H. G. J. M. (1981). The anatomy of the descending pathways. In Brooks, V. B. V., Brookhart, J. M., and Mountcastle, J. M. (eds.), Handbook of Physiology, Section 1. The Nervous System II (2), Am. Physiol. Society, Bethesda, MD, pp. 597-666.

  • Lehman, R. A. W. (1970). Hand preference and cerebral predominance in 24 rhesus monkeys. J. Neurol. Sci. 10: 185-192.

    Google Scholar 

  • LeMay, M. (1985). Asymmetries of the brains and skulls of nonhuman primates. In Glick, S. D. (ed.), Cerebral Lateralization in Nonhuman Species, Academic Press, New York, pp. 223-245.

    Google Scholar 

  • MacNeilage, P., Studdert-Kennedy, M. G., and Lindblom, B. (1987). Primate handedness reconsidered. Behav. Brain Sci. 10: 247-263.

    Google Scholar 

  • Marchant, L. F., and McGrew, W. C. (1991). Laterality of function in apes: A meta-analysis of methods. J. Hum. Evol. 21: 425-438.

    Google Scholar 

  • Marchant, L. F., and Steklis, H. D. (1986). Hand preference in a captive island group of chimpanzees (Pan troglodytes). Am. J. Primatol. 10: 301-313.

    Google Scholar 

  • Marzke, M. (1997). Precision grips, hand morphology, and tools. Am. J. Phys. Anthropol. 102: 91-110.

    Google Scholar 

  • Marzke, W. M., and Wullstein, K. L. (1996). Chimpanzee and human grips: A new classification with a focus on evolutionary morphology. Int. J. Primatol. 17: 117-139.

    Google Scholar 

  • Muir, R. B. (1985). Small hand muscles in precision grip: A corticospinal prerogative. In Goodwin, A. W., and Darian-Smith, I. (eds.), Hand Function and Neocortex, Exp. Brain Res. Suppl. 10, Springer, Berlin, New York, pp. 155-174.

    Google Scholar 

  • Napier, J. R. (1956). The prehensile movements of the human hand. J. Bone Joint Surg. Am. 38B: 902-913.

    Google Scholar 

  • Napier, J. R. (1962). The evolution of the hand. Sci. Am. 12: 49-55.

    Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113.

    Google Scholar 

  • Pause, M., Kunesch, E., Binkofski, F., and Freund, H.-J. (1989). Sensorimotor disturbances in patients with lesions of the parietal cortex. Brain 112: 1599-1625.

    Google Scholar 

  • Porter, R., and Lemon, R. (1993). Corticospinal function and voluntary movement. Monographs of the Physiological Society 45, Clarendon Press, Oxford.

    Google Scholar 

  • Preuschoft, H. (1973). Functional anatomy of the upper extremity. In Bourne, G. H. (ed.), The Chimpanzee (6), Karger, Basel, Baltimore, pp. 34-115.

    Google Scholar 

  • Sprankel, H., and Lorenz, R. (1984). P. troglodytes, Ergreifen kleiner Objekte, Film E 1796, Publ. Inst. Wiss. Film (IWF), Göttingen.

    Google Scholar 

  • Susman, R. L. (1988). Hand of Paranthropus robustus from Member 1, Swartkrans: Fossil evidence for tool behavior. Science 240: 781-783.

    Google Scholar 

  • Susman, R. (1995). Thumbs, tools, and early humans. Science 268: 586-589.

    Google Scholar 

  • Sugiyama, Y., Fushimi, T., Sakura, O., and Matsuzawa, T. (1993). Hand preference and tool use in wild chimpanzees. Primates 34(2): 151-159.

    Google Scholar 

  • Tonooka, R., and Matsuzawa, T. (1995). Hand preferences of captive chimpanzees (Pan troglodytes) in simple reaching for food. Int. J. Primatol. 16(1): 17-35.

    Google Scholar 

  • Tuttle, R. H. (1965). A Study of the Chimpanzee Hand with Comments on Hominoid Evolution, University of California, Berkeley, University Microfilm, Ann Arbor, MI.

    Google Scholar 

  • Tuttle, R. H. (1967). Knuckle-walking and the evolution of hands. Am. J. Phys. Anthropol. 26: 171-296.

    Google Scholar 

  • Vieeschouwer, De K., Van Elsacker, L., and Verheyen, R. F. (1995). Effect of posture on hand preferences during experimental food reaching in bonobos (Pan paniscus). J. Comp. Psychol. 109(2): 203-207.

    Google Scholar 

  • Wang, X., Merzenich, M. M., Sameshima, K., and Jenkins, W. M. (1995). Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378: 71-75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christel, M.I., Kitzel, S. & Niemitz, C. How Precisely Do Bonobos (Pan paniscus) Grasp Small Objects?. International Journal of Primatology 19, 165–194 (1998). https://doi.org/10.1023/A:1020319313219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020319313219

Navigation