Skip to main content
Log in

The symbiotic role of marine microbes on living surfaces

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Every surface immersed in the sea rapidly becomes covered with a biofilm. On inanimate surfaces, this is often followed by colonisation by larger organisms, and general macrofouling. On the other hand, the majority of marine organisms remain relatively free from macrofouling, although some may be covered in a thin film of epibiotic bacteria. The role of these bacteria in maintaining the health of the host has received little attention. Here we describe an ecological role for epibiotic bacteria from seaweed surfaces. These epibionts may play a protective role, releasing compounds into the surrounding seawater that help prevent extensive fouling of the surface. These compounds may also have industrial and medical applications. The relative ease of culturing these microbes, compared to other bacteria that produce active compounds suggests seaweed-associated bacteria may be useful in bioprocess applications, such as the production of antimicrobial or antifouling compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Armstrong, E., J. D. McKenzie & G. T. Goldsworthy, 1999. Aquaculture of sponges on scallops for natural products research and antifouling. J. Biotechnol. 70: 163–174.

    Google Scholar 

  • Boyd, K. G., D. R. Adams & J. G. Burgess, 1999a. Antibacterial and repellent activity of marine bacteria associated with algal surfaces. Biofouling 14: 227–236

    Google Scholar 

  • Boyd, K. G., A. Mearns-Spragg & J. G. Burgess, 1999b. Screening of Marine Bacteria for the Production of Microbial Repellents Using a Spectrophotometric Chemotaxis Assay. Mar. Biotechnol. 1: 359–363.

    Google Scholar 

  • Boyd, K. G., A. Mearns-Spragg, G. Brindley, K. Hatzidimitriou, A. Rennie, M. Bregu, M. O. Hubble & J. G. Burgess, 1998. Antifouling potential of epiphytic marine bacteria from the surfaces of marine algae. In Le Gal, Y. & A. Muller-Feuga (eds), Marine Micro-organisms for Industry. EDITIONS IFREMER, Plouzané, France: 128–136.

    Google Scholar 

  • Bewley, C. A., N. D. Holland & D. J. Faulkner, 1996. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52: 716–722.

    Google Scholar 

  • Burgess, J. G., E. M. Jordan, M. Bregu, A. Mearns-Spragg & K. G. Boyd, 1999. Microbial antagonism: a neglected avenue of natural products research. J. Biotechnol. 70: 27–32.

    Google Scholar 

  • Clare, A. S., 1996. Marine natural product antifoulants: status and potential. Biofouling 9: 211–229.

    Google Scholar 

  • Davies, D. G., A. M. Chakrabarty & G. G. Geesey, 1993. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Apl. envir. Microbiol. 59: 1181–1186.

    Google Scholar 

  • Filion-Myklebust, C. & T. A. Norton, 1981. Epidermis shedding on the brown seaweed Ascophyllum nodosum (L.) Le Jolis, and its ecological significance. Mar. Biol. Lett. 2: 45–51.

    Google Scholar 

  • Gil-Turness, M. S. & W. Fenical, 1992 Embryos of Homarus americanus are protected by epibiotic bacteria. Biol. Bull. 182: 105–108.

    Google Scholar 

  • Holmstrom, C., D. Rittschof & S. Kjelleberg, 1992. Inhibition of Settlement by Larvae of Balanus amphitrite and Ciona intestinalis by a Surface-Colonizing Marine Bacterium. Apl. envir. Microbiol. 58: 2111–2115.

    Google Scholar 

  • Hoyle, B. D., L. J. Williams & J. W. Costerton, 1993. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms. Infect. Immun. 61: 777–780.

    Google Scholar 

  • Laycock, R. A., 1974. The detrital food chain based on seaweeds. 1. Bacteria associated with the surface of Laminaria fronds. Mar. Biol. 25: 223–231.

    Google Scholar 

  • Lemos, M. L., A. E. Toranzo & J. L. Barja, 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbiol. Ecol. 11: 149–163.

    Google Scholar 

  • Mann, K. H., 1973. Seaweeds: their productivity and strategy for growth. Science 182: 975–981.

    Google Scholar 

  • Mearns-Spragg, A., K. G. Boyd, M. O. Hubble & J. G. Burgess, 1997. Antibiotics from surface associated marine bacteria. Proceedings of the Fourth Underwater Science Symposium. The Society for Underwater Technology, London: 147–157.

  • Mearns-Spragg A., M. Bregu, K. G. Boyd & J. G. Burgess, 1998. Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates after exposure to terrestrial bacteria. Lett. Apl. Microbiol. 27: 142–146.

    Google Scholar 

  • Moss, B. L., 1982. The control of epiphytes by Halidrys siliquosa (L.) Lynbg. (Phaeophyta, Cystoseiraceae). Phycologia 21: 185–191.

    Google Scholar 

  • Ott, J. A., 1980. Growth and production in Posidonia oceanica (L.) Delile. P.S.Z.N.I. Mar. Ecol. 1: 47–64.

    Google Scholar 

  • Patterson, G. L. & C. M. Bolis, 1997. Fungal cell-wall polysaccharides elicit an antifungal secondary metabolite (phytoalexin) in the cyanobacterium Scytonema ocellatum. J. Phycol. 33: 54–60.

    Google Scholar 

  • Prieur, D., F. Gaill & S. Corre, 1993. Complex Epibiotic Bacterial Communities on Marine Organisms: Fouling or Interactions? In Guerrero, R. & C. Pedrós-Alió (eds), Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona: 207–212.

    Google Scholar 

  • Salmond, G. P. C., B. W. Bycroft, G. S. A. B. Stewart & P. Williams, 1995. The bacterial ‘enigma’: cracking the code of cell—cell communication. Mol. Microbiol. 16: 615–625.

    Google Scholar 

  • Sieburth, J. M., 1969. Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. exp. mar. Biol. Ecol. 3: 290–309.

    Google Scholar 

  • Sieburth, J. M. & J. L. Tootle, 1981. Seasonality of microbial fouling on Ascophyllum nodosum (L.) Lejol, Fucus vesiculosus L., Polysiphonia lanosa (L.) Tandy and Chondrus crispus Stackh. J. Phycol. 17: 57–64.

    Google Scholar 

  • Tatewaki, M., L. Provasoli & I. J. Pinter, 1983. Morphogenesis of Monostroma oxysperma (Kutz.) Doty (Chlorophyceae) in axenic culture, especially in bialgal culture. J. Phycol. 19: 404–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Grant Burgess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, E., Yan, L., Boyd, K.G. et al. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461, 37–40 (2001). https://doi.org/10.1023/A:1012756913566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012756913566

Navigation