Skip to main content
Log in

Isolation and characterization of the human homeobox gene HOX D1

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Homeobox genes, first identified in Drosophila, encode transcription factors that regulate embryonic development along the anteroposterior axis of an organism. Vertebrate homeobox genes are described on the basis of their homology to the genes found within the Drosophila Antennapedia and Bithorax homeotic gene complexes. Mammals possess four paralogous homeobox (HOX) gene clusters, HOX A, HOX B, HOX C and HOX D, each located on different chromosomes, consisting of 9 to 11 genes arranged in tandem. We report the characterization of the human HOX D1 gene. This gene consists of two exons, encoding a 328 amino acid protein, separated by an intron of 354 bp. The human HOX D1 protein is one amino acid longer (328 amino acids) than the mouse protein (327 amino acids) and is 82% identical to the mouse HOX D1 homolog. The DNA binding homeodomain region of the human protein exhibits a 97% and 80% identity between mouse Hoxd1 and Drosophila labial homeodomains, respectively. The exon/intron and intron/exon splice junctions are conserved in position between human and mouse genes. Determination of the human HOX D1 gene structure permits the use of PCR based analysis of this gene for the assessment of mutations, for diseases that link to the HOXD cluster (such as Duanes Retraction Syndrome (DRS)), or polymorphisms associated with human variation. Molecular characterization of the HOXD1 gene may also permit analysis of the functional role of this gene in human neurogenisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis EB (1978) Nature 7: 565–70.

    Google Scholar 

  2. Gehring WJ (1994). In: Duboule D (Ed) A History of the Homeobox: Guidebook to the Homeobox Genes (pp. 3–10). Oxford University Press, Oxford.

    Google Scholar 

  3. Laughon A & Scott MP (1984) Nature 310, 24–31.

    Google Scholar 

  4. Kaufman TC Lewis R & Wakimoto B (1980) Genetics 94: 115–133.

    Google Scholar 

  5. Scott MP (1993) Nucleic Acids Res. 21: 1687–1688.

    Google Scholar 

  6. Kappen C, Schughart K & Ruddle FH, (1989) Proc. Natl. Acad. Sci. USA 86: 5459–5463.

    Google Scholar 

  7. Boncinelli E, Somma R, Acampora D, Pannese M, D'Esposito M, Faiella A & Simeone A (1988) Human Reproduction 3: 880–886.

    Google Scholar 

  8. Mark M, Rijli FM & Chambon P (1997) Pediatric Research 4: 421–429.

    Google Scholar 

  9. Dubuole D & Dollé P (1989) EMBO J. 8: 1497–1505.

    Google Scholar 

  10. Gaunt SJ, Krumlauf R & Duboule D (1989) Development 107: 131–141.

    Google Scholar 

  11. Graham A, Papalopulu N & Krumlauf R (1989) Cell 57: 367–378.

    Google Scholar 

  12. Papalopulu N, Lovell-Badge R & Krumlauf R (1991) Nucleic Acids Res. 19: 5497–5506.

    Google Scholar 

  13. Simeone A, Acampora D, Nigro V, Faiella A, D'Esposito M, Stornaiuolo A, Mavilio F & Boncinelli E (1991) Mech. Dev. 33: 215–228.

    Google Scholar 

  14. Manley NR & Capecchi MR (1997) Dev. Biol. 192: 274–288.

    Google Scholar 

  15. Manley NR & Capecchi MR (1998) Dev. Biol. 195: 1–15.

    Google Scholar 

  16. Frohman MA, Boyle M & Martin G (1990) Development 110: 589–607.

    Google Scholar 

  17. Hunt P, Gulisano M, Cook M, Sham M-H, Faiella A, Wilkinson D, Boncinelli E & Krumlauf R (1991) Nature 353: 861–864.

    Google Scholar 

  18. Huber A (1974) Br. J. Ophthalmol. 58: 293–300.

    Google Scholar 

  19. Parsa CF, Grant E, Dillon WP Jr, du Lac S & Hoyt WF (1998) Am. J. Ophthalmol. 125: 399–401.

    Google Scholar 

  20. Hotchkiss MG, Miller NR, Clark AW & Green WR (1980) Arch. Ophthalmol. 98: 870–874.

    Google Scholar 

  21. Miller NR, Kiel SM, Green WR & Clark AW (1982) Arch. Ophthalmol. 100: 1468–1472.

    Google Scholar 

  22. Goddard JM, Rossei M, Manley NR & Capecchi MR (1996) Development 122: 3217–3228.

    Google Scholar 

  23. Stornaiuolo A, Acampora D, Pannese M, D'Esposito M, Morelli F, Migliaccio E, Rambaldi M, Faiella A, Nigro V, Simeone A & Boncinelli E (1990) Cell Differentiation and Development 31: 119–127.

    Google Scholar 

  24. Frohman MA & Martin GR (1992) Mech. Dev. 38: 55–67.

    Google Scholar 

  25. Laughon A (1991) Biochemistry 30: 11357–11367.

    Google Scholar 

  26. Acampora D, D'Esposito M, Faiella A, Pannese M, Migliaccio E, Morelli F, Stornaiuolo A, Nigro V, Simeone A & Boncinelli E (1989) Nucleic Acids Res. 17: 10385–10402.

    Google Scholar 

  27. Boncinelli E, Acampora D, Pannese M, D'Esposito M, Somma R, Gaudino G, Stornaiuolo A, Cafiero M, Faiella A & Simeone A (1989) Genome 31: 745–756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appukuttan, B., Sood, R., Ott, S. et al. Isolation and characterization of the human homeobox gene HOX D1. Mol Biol Rep 27, 195–201 (2000). https://doi.org/10.1023/A:1011048931477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011048931477

Navigation