Skip to main content
Log in

Characterization of human and mouse H19 regulatory sequences

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

H19 is expressed in a large percentage of bladder tumors, but not expressed in healthy bladder tissue. The aim of this study is to define H19 optimal transcriptional regulatory sequences in tumor cells, which can potentially be used to control expression of a toxin gene in constructs to be used in bladder cancer gene therapy trials in mice and human. Transient expression assays revealed that elements responsible for promoter activity are contained within the 85 bp upstream region. The transcriptional activity of this region was strongly inhibited by the methylation of the Hpa II sites. A modest cell specificity is conferred by the upstream sequences. The human and murine promoter activities were significantly increased by the human H19 4.1 kb enhancer sequence. The 85 bp H19 upstream region contains all the elements to interact with the enhancer. We showed that the human H19 promoter is highly active in a murine bladder carcinoma cell line, justifying its use to drive the expression of a cytotoxin gene in gene therapy trials in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brannan CI, Dees EC, Ingram RS & Tighlman SM (1990) Mol. Cell. Biol. 10: 28–36

    Google Scholar 

  2. Hao Y, Crenshaw T, Moulton T, Newcomb E & Tycko B (1993) Nature 365: 764–767

    Google Scholar 

  3. Dugimont T, Montpellier C, Adriaenssens E, Lottin S, Dumont L, Iotsova V, Lagrou C, Stehelin D, Coll J & Curgy JJ (1998) Oncogene 16: 2395–2401

    Google Scholar 

  4. Lustig-Yariv O, Schulze E, Komitowski D, Erdmann V, Schneider T, de Groot N & Hochberg A (1997) Oncogene 15: 169–177

    Google Scholar 

  5. Li YM, Franklin G, Cui HM, Svensson K, He XB, Adam G & Ohlsson Pfeifer RSJ (1998) Biol. Chem. 273: 2847–28252

    Google Scholar 

  6. Cooper M, Fisher M, Komitowski D, Shevelev A, Schulze E, Ariel I, Tykocinski, M, Miron S, Ilan J, de Groot N & Hochberg A (1996) J. Urol. 155: 2110–2133

    Google Scholar 

  7. Ariel I, Ayesh S, Perlman E, Pizov G, Tanos V, Scheider T, Erdmann V, Podeh D, Komitowski D, Quasem AS, de Groot N & Hochberg A (1997) Clin. Mol. Pathol. 50: 34–44

    Google Scholar 

  8. Ariel I, Miao H, Ji XR, Schneider T, de Groot N, Hochberg A & Ayesh S (1998) J. Clin. Pathol. Mol. Pathol. 51: 21–25

    Google Scholar 

  9. Ariel I, Lustig O, Schneider T, Sappir M, de-Groot N & Hochberg A (1995) Urology 45: 335–338

    Google Scholar 

  10. Pachnis V, Belayew A & Tilghman SM (1984) Proc. Natl. Acad. Sci. USA 81: 5523–5527

    Google Scholar 

  11. Yoo-Warren H, Pachnis V, Ingram RS & Tilghman SM (1988) Mol. Cell.Biol. 8: 4707–4715

    Google Scholar 

  12. Kopf E, Bibi O, Ayesh S, Tykocinski M, Vitner K, de Groot N & Hochberg A (1998) FEBS Lett. 432: 123–127

    Google Scholar 

  13. Ohana P, Kopf E, Bibi O, Ayesh S, Schneider T, Laster M, Tykocinski M, de Groot N & Hochberg A (1999) FEBS Lett. 454: 81–84

    Google Scholar 

  14. Li E, Beard C & Jaenisch R (1993) Nature 366: 362–365

    Google Scholar 

  15. Surani MA (1993) Nature 366: 302–303

    Google Scholar 

  16. Zhang Y, Shields T, Crenshaw T, Hao Y, Moulton T & Tycko B (1993) Am. J. Hum. Genet. 53(1): 113–124

    Google Scholar 

  17. Elkin M, Ayesh S, Schneider T, de Groot N, Hochberg A & Ariel I (1998) Carcinogenesis 19: 2095–2099

    Google Scholar 

  18. Szabo PE, Pfeifer GP & Mann JR (1998) Mol. Cell. Biol. 18 (11): 6767–6776.

    Google Scholar 

  19. Hanson RW (1998) J. Biol. Chem. 273: 28543–28544

    Google Scholar 

  20. Croniger C, Trus M, Lysek-Stupp K, Cohen H., Liu Y, Darlington GJ, Poli V, Hanson RW & Reshef L (1997) J. Biol. Chem. 272: 26306–26312

    Google Scholar 

  21. Lekstrom-Himes J & Xanthopoulos KG (1998) J. Biol. Chem. 273: 28545–28548

    Google Scholar 

  22. Voutilainen R, Ilvesmaki V, Ariel I, Rachmilewitz J, de-Groot N & Hochberg A (1994) Endocrinology 134 (5): 2051–2056

    Google Scholar 

  23. Ben-Haltar J, Beard P & Jirleny J (1989) Nuclei Acids Res. 17 (24): 10179–10189

    Google Scholar 

  24. Baylin SB & Herman JG (2000) TIG 16 (4): 168–174.

    Google Scholar 

  25. Stein R, Razin A & Cedar H (1982) Proc. Natl. Acad. Sci. USA 79: 3418–3422

    Google Scholar 

  26. Vardimon L, Kressmann A, Cedar H, Maechler M & Doerfler, W (1982) Proc. Natl. Acad. Sci USA 79: 1073–1077.

    Google Scholar 

  27. Meehan R, Lewis J, Cross S, Nan X, Jeppesen P & Bird A (1992) J. Cell Sci. Suppl. 16: 9–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banet, G., Bibi, O., Matouk, I. et al. Characterization of human and mouse H19 regulatory sequences. Mol Biol Rep 27, 157–165 (2000). https://doi.org/10.1023/A:1007139713781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007139713781

Navigation