Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T16:58:01.567Z Has data issue: false hasContentIssue false

The effect of Pleistocene glacial morphogenesis on the genetic structure of the humid- and cold-tolerant root vole Microtus oeconomus (Rodentia, Cricetidae) in Poland, central Europe

Published online by Cambridge University Press:  22 October 2019

Elżbieta Jancewicz
Affiliation:
Department of Forest Zoology and Wildlife Management, Faculty of Forestry, Warsaw University of Life Sciences – SGGW, 02-776 Warsaw, Poland
Ewa Falkowska*
Affiliation:
Faculty of Geology, University of Warsaw, 02-089 Warsaw, Poland
*
*Corresponding author e-mail address: ewa.falkowska@uw.edu.pl (E. Falkowska).

Abstract

During the Pleistocene in the northern part of Europe and Asia, the presence of ice sheets not only limited the range of species but also influenced landscape and thus the contemporary habitat system that determines the pattern of biodiversity. The aim of the research was to find out whether and how a lowland landscape, which formed as a result of subsequent Pleistocene glaciations (five) that in Eurasia covered various and generally successively smaller areas, affected the genetic differentiation of a species. The research was carried out in eastern Poland on the root vole Microtus oeconomus (Arvicolinae, Rodentia), a model boreal and hygrophilous species. Samples were collected from 549 vole individuals at 33 locations. Based on the analysis of 12 microsatellite loci and the 908 bp of cytochrome b sequences (mitochondrial DNA), the genetic structure of M. oeconomus in the landscape zones of the Polish Lowlands was determined. The results show that the latitudinal variability of the relief in eastern Poland (resulting from different ranges of Pleistocene ice sheets) and the related specific configuration of hydrogenic habitats are reflected in the genetic differentiation of the root vole. Therefore, it may be concluded that the history of landscape development affects the genetic structure of hydrophilic species.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Astakhov, V.I., 2013. Pleistocene glaciations of northern Russia – a modern view. Boreas 42, 123.Google Scholar
Baca, M., Nadachowski, A., Lipecki, G., Mackiewicz, P., Marciszak, A., Popović, D., Socha, P., Stefaniak, K., Wojtal, P., 2017. Impact of climatic changes in the Late Pleistocene on migrations and extinctions of mammals in Europe: four case studies. Geological Quarterly 61, 291304.Google Scholar
Báldi, A., Csorba, G., Korsós, Z., 2001. Setting priorities for the conservation of terrestrial vertebrates in Hungary. Biodiversity Conservation 10, 12831296.Google Scholar
Baltrūnas, V., Švedas, K., Pukelytė, V., 2007. Palaeogeography of South Lithuania during the last ice age. Sedimentary Geology 193, 221231.Google Scholar
Bałuk, A., 1991. Czwartorzęd dorzecza dolnej Narwi, północno-wschodnie Mazowsze [Quaternary of the lower Narew River basin (north-eastern Masovia]. [In Polish with English and Russian summaries.] Prace Państwowego Instytutu Geologicznego 130, 173Google Scholar
Banaszek, A., Jadwiszczak, K.A., Ziomek, J., 2011. Genetic variability and differentiation in the Polish common hamster (Cricetus cricetus L.): genetic consequences of agricultural habitat fragmentation. Mammalian Biology 76, 665671.Google Scholar
Ber, A., 2006. Pleistocene interglacials and glaciations of northeastern Poland compared to neighbouring areas. Quaternary International 149, 1223.Google Scholar
Brown, J.L., 1984. The evolution of diversity in avian territorial systems. Wilson Bulletin 76, 160169.Google Scholar
Brunhoff, C., Galbreath, K.E., Fedorov, V.B., Cook, A., Jaarola, M., 2003. Holarctic phylogeography of the root vole (Microtus oeconomus): implications for late Quaternary biogeography of high latitudes. Molecular Ecology 12, 957968.Google Scholar
Brunhoff, C., Yoccoz, N.G., Ims, R.A., Jaarola, M., 2006. Glacial survival or late glacial colonization? Phylogeography of the root vole (Microtus oeconomus) in north-west Norway. Journal of Biogeography 33, 21362144.Google Scholar
Burridge, C.P., Craw, D., Fletcher, D., Waters, J.M., 2008. Geological dates and molecular rates: fish DNA sheds light on time dependency. Molecular Biology Evolution 25, 624633.Google Scholar
Choiński, A., 2007. Limnologia fizyczna Polski [Physical limnology of Poland] . Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, Poznań, Poland.Google Scholar
Conroy, C.J., Patton, J.L., Lim, M.C.W., Phuong, M.A., Parmenter, B., Höhna, S., 2016. Following the rivers: historical reconstruction of California voles Microtus californicus (Rodentia: Cricetidae) in the deserts of eastern California. Biological Journal of the Linnean Society 119, 8098.Google Scholar
Craw, D., Burridge, C., Morris, R., Waters, J., 2008. Genetic ages for Quaternary topographic evolution: a new dating tool. Geology 36, 1922.Google Scholar
Czajkowska, M., Borkowska, A., Wieczorek, M., Zub, K., 2010. Application of microsatellite markers developed for arvicoline species in a population genetic study of the root vole Microtus oeconomus. Acta Theriologica 55, 123128.Google Scholar
Czarnomska, S.D., Niedziałkowska, M., Borowik, T., Jędrzejewska, B., 2018. Regional and local patterns of genetic variation and structure in yellow-necked mice - the roles of geographic distance, population abundance, and winter severity. Ecology and Evolution 8, 81718186.Google Scholar
Dąbrowski, M.J., Pomorski, J.J., Gliwicz, J., 2013. Cytochrome b gene (cytb) sequence diversity in a Microtus oeconomus population from Białowieża Primeval Forest. Acta Theriologica 58, 119126.Google Scholar
Daza, J.M., Castoe, T.A., Parkinson, C.L., 2010. Using regional comparative phylogeographic data from snake lineages to infer historical processes in Middle America. Ecography 33, 343354.Google Scholar
Dembek, W., Piórkowski, W., Rycharski, M., 2000. Mokradła na tle regionalizacji fizycznogeograficznej Polski [Wetlands against the background of physico-geographical regionalization of Poland]. Biblioteka Wiadomości IMUZ, 97. Wydawnictwo Instytutu Melioracji i Użytków Zielonych, Falenty, Poland.Google Scholar
Earl, D.A., Vonholdt, B.M., 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359361.Google Scholar
Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 26112620.Google Scholar
Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Falkowska, E., 2001. Regularities in the occurrence of protection zones in polygenetic river valleys from the eastern part of the Polish Lowlands. Acta Geologica Polonica 51, 163192.Google Scholar
Falkowska, E., 2009. Glacial morphogenesis of uplands of the Warta Glaciation in Poland as a control on heavy metal distribution in deposits. Geological Quarterly 53, 293304.Google Scholar
Falkowska, E., Falkowski, T., 2015. Trace metals distribution pattern in floodplain sediments of a lowland river in relation to contemporary valley bottom morphodynamics. Earth Surface Processes and Landforms 40, 876887.Google Scholar
Falkowska, E., Falkowski, T., Tatur, A., Kałmykow-Piwińska, A., 2016. Floodplain morphodynamics and distribution of trace elements in overbank deposits, Vistula River Valley Gorge near Solec nad Wisłą, Poland. Acta Geologica Polonica 66, 543561.Google Scholar
Falkowski, E. 1975. Variability of channel processes of lowland rivers in Poland and changes of the valley floors during the Holocene. Biuletyn Geologiczny Uniwersytetu Warszawskiego (Bulletin of Geology) 19, 4578.Google Scholar
Falkowski, T., 2003. Influence of the morphogenetic diversity of the Nida-Wkra River valley stretches on the conditions of underground flow. Annals of Warsaw University of Life Sciences – SGGW Land Reclamation 34, 5164.Google Scholar
Falush, D., Stephens, M., Pritchard, J.K., 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 15671587.Google Scholar
Fietz, J., Tomiuk, J., Loeschcke, V., Weis-Dootz, T., Segelbacher, G., 2014. Genetic consequences of forest fragmentation for a highly specialized arboreal mammal - the edible dormouse. PLoS ONE 9, e88092.Google Scholar
Fløjgaard, C., Normand, S., Skov, F., Svenning, J.-C., 2009. Ice age distributions of European small mammals: insights from species distribution modelling. Journal of Biogeography 36, 11521163.Google Scholar
García-Vázquez, D., Bilton, D.T., Foster, G.N., Ribera, I., 2017. Pleistocene range shifts, refugia and the origin of widespread species in western Palaearctic water beetles. Molecular Phylogenetics and Evolution 114, 122136.Google Scholar
Gębica, P., 2004. Przebieg akumulacji rzecznej w górnym vistulianie w Kotlinie Sandomierskiej [The course of fluvial accumulation during the Upper Vistulian in Sandomierz Basin]. [In Polish with English summary.] Prace Geograficzne (Geographical Studies) 193, 1229.Google Scholar
Gerlach, G., Musolf, K., 2000. Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conservation Biology 14, 10661074.Google Scholar
Gliwicz, J., Jancewicz, E., 2004. Voles in river valleys. In: Jędrzejewska, B., Wójcik, J.M. (Eds.), Essays on Mammals of Białowieża Forest. Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland, pp. 139149.Google Scholar
Gliwicz, J., Jancewicz, E., 2016. Cascade effect of climate warming: snow duration - vole population dynamics - biodiversity. British Journal of Environment and Climate Change 6, 4352.Google Scholar
Gottscho, A.D., 2016. Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America. Biological Reviews 91, 235254.Google Scholar
Goudet, J., 1995. FSTAT (version 2.9.3): a computer program to calculate F-statistics. Journal of Heredity 86, 485486.Google Scholar
Gutiérrez-García, T.A., Vázquez-Domínguez, E., 2013. Consensus between genes and stones in the biogeographic and evolutionary history of Central America. Quaternary Research 79, 311324.Google Scholar
Hampe, A., Petit, R.J., 2005. Conserving biodiversity under climate change: the rear edge matters. Ecological Letters 8, 461467.Google Scholar
Harasimiuk, M., Dobrowolski, R., Rodzik, J., 2002. Budowa geologiczna i rzeźba terenu Poleskiego Parku Narodowego. In: Radwan, S. (Ed.), Poleski Park Narodowy, monografia przyrodnicza [Nature monograph of Poleski National Park]. Wydawnictwo MORPOL, Lublin, Poland, pp. 2941.Google Scholar
Haring, E., Sheremetyeva, I.N., Kryukov, A.P., 2011. Phylogeny of Palearctic vole species (genus Microtus, Rodentia) based on mitochondrial sequences. Mammalian Biology 76, 258267.Google Scholar
Hartl, D.L., Clark, G.C., 1997. Principles of Population Genetics. Sinauer Associates Inc., Sunderland, MA.Google Scholar
Herman, J.S., McDevitt, A.D., Kawałko, A., Jaarola, M., Wójcik, J.M., Searle, J.B., 2014. Land-bridge calibration of molecular clocks and the postglacial colonization of Scandinavia by the Eurasian field vole Microtus agrestis. PLoS ONE 9, e103949.Google Scholar
Hrbek, T., da Silva, V.M.F., Dutra, N., Gravena, W., Martin, A.R., Farias, I.P., 2014. A new species of river dolphin from Brazil or: how little do we know our biodiversity. PLoS ONE 9, e83623.Google Scholar
Hrbek, T., Küçük, F.K., Frickey, T., Stölting, K.N., Wildekamp, R.H., Meyer, A., 2002. Molecular phylogeny and historical biogeography of the Aphanius (Pisces, Cyprinodontiformes) species complex of central Anatolia, Turkey. Molecular Phylogenetics and Evolution 25, 125137.Google Scholar
Hrbek, T., Stölting, K.N., Bardakci, F., Küçük, F.K., Wildekamp, R.H., 2004. Plate tectonics and biogeographical patterns of the Pseudophoxinus (Pisces: Cypriniformes) species complex of central Anatolia, Turkey. Molecular Phylogenetics and Evolution 32, 297308.Google Scholar
Huck, S., Budel, B., Schmitt, T., 2012. Ice-age isolation, postglacial hybridization and recent population bottlenecks shape the genetic structure of Meum athamanticum in Central Europe. Flora 207, 399407.Google Scholar
Hulejová Sládkovičová, V., Dąbrowski, M.J., Žak, D., Miklós, P., Gubányi, A., La Haye, M.J.J., Bekker, D., et al. , 2018. Genetic variability of the cold-tolerant Microtus oeconomus subspecies left behind retreating glaciers. Mammalian Biology 88, 8593.Google Scholar
Jaarola, M., Searle, J.B., 2002. Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Molecular Ecology 11, 26132621.Google Scholar
Jaarola, M., Tegelström, H., Fredga, K., 1999. Colonization history in Fennoscandian rodents. Biological Journal of the Linnean Society 68, 113127.Google Scholar
Jancewicz, E., Falkowska, E., Ratkiewicz, M., 2015. Post-Pleistocene colonization history of eastern Poland by the root vole, Microtus oeconomus: evidence for local northern latitude refugium based on mtDNA survey. Journal of Zoological Systematics and Evolutionary Research 53, 331339.Google Scholar
Jancewicz, E., Gliwicz, J., 2017. Niche dynamics and biodiversity: many rodent species on one marshy meadow. Polish Journal of Ecology 65, 371379.Google Scholar
Kaszewski, B.M., 2002. Warunki klimatyczne Poleskiego Parku Narodowego. In: Radwan, S. (Ed.), Poleski Park Narodowy, monografia przyrodnicza [Nature monograph of Poleski National Park]. Wydawnictwo MORPOL, Lublin, Poland, pp. 1928.Google Scholar
Kondracki, J., 2011. Geografia regionalna Polski [Regional geography of Poland]. Wydawnictwo Naukowe PWN, Warsaw, Poland.Google Scholar
Kotlík, P., Deffontaine, V., Mascheretti, S., Zima, J., Michaux, J.R., Searle, J.B., 2006. A northern glacial refugium for bank voles (Clethrionomys glareolus). Proceedings of the National Academy of Sciences of the United States of America 103, 1486014864.Google Scholar
Kowalski, K., 2001. Pleistocene rodents of Europe. Folia Quaternaria 72, 3389.Google Scholar
Kwapisz, B., 1998. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50000, Arkusz Aleksandrów [Explanations to the detailed geological map of Poland 1:50000, Aleksandrów sheet]. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warsaw.Google Scholar
Leijs, R., van Apeldoorn, R.C., Bijlsma, R., 1999. Low genetic differentiation in north-west European populations of the locally endangered root vole, Microtus oeconomus. Biological Conservation 87, 3948.Google Scholar
Lindner, L., 1987. Main stratigraphic problems in the Pleistocene of Poland. Bulletin of the Polish Academy of Sciences: Earth Sciences 35, 343358.Google Scholar
Lindner, L., Marks, L., 1994. Pleistocene glaciations and interglacials in the Vistula, the Oder and the Elbe drainage basins (Central European Lowland). Acta Geologica Polonica 44, 153165.Google Scholar
Lindner, L., Marks, L., 1999. New approach to stratigraphy of palaeolake and glacial sediments of the younger Middle Pleistocene in mid-eastern Poland. Geological Quarterly 43, 18.Google Scholar
Linzey, A.V., Shar, S., Lkhagvasuren, D., Juškaitis, R., Sheftel, B., Meinig, H., Amori, G., Henttonen, H., 2016. Microtus oeconomus (errata version published in 2017). IUCN Red List of Threatened Species 2016, e.T13451A115113894.Google Scholar
Lisicki, S., Rychel, J., 2006. Szczegółowa mapa geologiczna Polski 1: 50 000, Arkusz Wydminy [The detailed geological map of Poland 1:50 000. Wydminy sheet]. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warsaw.Google Scholar
Lister, A.M., Stuart, A.J., 2008. The impact of climate change on large mammal distribution and extinction: evidence from the last glacial/inter glacial transition. Comptes Rendus Geosciences 340, 615620.Google Scholar
Madeyska, T., 1981. Środowisko człowieka w środkowym i górnym paleolicie na ziemiach polskich w świetle badań geologicznych. Studia Geologica Polonica 69, 7125.Google Scholar
Majdanowski, S., 1954. Jeziora Polski [The lakes of Poland]. [In Polish with English and Russian summaries.] Przegląd Geograficzny 26, 1750.Google Scholar
Markova, A.K. van Kolfschoten, T. (Eds.), 2008. Evolution of European Ecosystems during Pleistocene–Holocene Transition 24–8 kyr BP. [In Russian with English summary.] KMK Scientific Press, Moscow.Google Scholar
Marks, L., 2005. Pleistocene glacial limits in the territory of Poland. Przegląd Geologiczny 53, 988993.Google Scholar
Marks, L., 2011. Quaternary glaciations in Poland. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations – Extent and Chronology. A Closer Look. Developments in Quaternary Sciences, Vol. 15. Elsevier, Amsterdam, pp. 299303.Google Scholar
Marks, L., Dzierżek, J., Janiszewski, R.J., Kaczorowski, J., Lindner, L., Majecka, A., Makos, M., Szymanek, M., Tołoczko-Pasek, A., Woronko, B., 2016. Quaternary stratigraphy and paleogeography of Poland. Acta Geologica Polonica 66, 403427.Google Scholar
Marks, L., Makos, M., Szymanek, M., Woronko, B., Dzierżek, J., Majecka, A., 2019. Late Pleistocene climate of Poland in the mid-European context. Quaternary International 504, 2439.Google Scholar
Mojski, J.E., 2005. Ziemie polskie w Czwartorzędzie. Zarys morfogenezy [The territory of Poland in the Quaternary. Outline of morphogenesis]. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warsaw.Google Scholar
Musiał, A., 1992. Studium rzeźby glacjalnej północnego Podlasia [Study of the glacial landscape of the northern Podlasie]. Rozprawy Uniwersytetu Warszawskiego 403, Warsaw.Google Scholar
Nadachowski, A., 1989. Origin and history of the present rodent fauna in Poland based on fossil evidence. Acta Theriologica 34, 3753.Google Scholar
Nadachowski, A., Harrison, D.L., Szyndlar, Z., Tomek, T., Wolsan, M., 1993. Late Pleistocene vertebrate fauna from Obłazowa 2 (Carpathians, Poland): palaeoecological reconstruction. Acta Zoologica Cracoviensia 36, 281290.Google Scholar
Peakall, R., Smouse, P.E., 2006. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.Google Scholar
Pilot, M., Dąbrowski, M.J., Jancewicz, E., Schtickzelle, N., Gliwicz, J., 2010. Temporally stable genetic variability and dynamic kinship structure in a fluctuating population of the root vole Microtus oeconomus. Molecular Ecology 19, 28002812.Google Scholar
Pritchard, J., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945959.Google Scholar
Puppo, P., Curto, M., Meimberg, H., 2016. Genetic structure of Micromeria (Lamiaceae) in Tenerife, the imprint of geological history and hybridization on within-island diversification. Ecology and Evolution 6, 34433460.Google Scholar
Ratkiewicz, M., Borkowska, A., 2006. Genetic structure is influenced by environmental barriers: empirical evidence from the common vole Microtus arvalis populations. Acta Theriologica 51, 337344.Google Scholar
Różycki, S.Z., 1972. Plejstocen Polski środkowej na tle przeszłości w górnym trzeciorzędzie [The Pleistocene of the Middle Poland against the background of the late Tertiary]. Państwowe Wydawnictwo Naukowe, Warsaw.Google Scholar
Sałata-Piłacińska, B., 1990. The southern range of the root vole in Poland. Acta Theriologica 35, 5367.Google Scholar
Słowański, W., 1981. Czwartorzęd na Mazurach [Quaternary in Masuria]. Biuletyn Państwowego Instytutu Geologicznego 23, 131141.Google Scholar
Smissen, P.J., Melville, J., Sumner, J., Jessor, T.S., 2013. Mountain barriers and river conduits: phylogeographical structure in a large, mobile lizard (Varanidae: Varanus varius) from eastern Australia. Journal of Biogeography 40, 17291740.Google Scholar
Sommer, R.S., Nadachowski, A., 2006. Glacial refugia of mammals in Europe: evidence from fossil records. Mammal Review 36, 251265.Google Scholar
Starkel, L., 1988. Paleogeography of the periglacial zone in Poland during the maximum advance of the Vistulian Ice Sheet. Geographia Polonica 55, 151164.Google Scholar
StatSoft Inc., 2012. STATISTICA (Data Analysis Software System), Version 10. StatSoft Inc., Tulsa, OK.Google Scholar
Steen, H., 1994. Low survival of long distance dispersers of the root vole (Microtus oeconomus). Annales Zoologici Fennici 31, 271274.Google Scholar
Stojak, J., Borowik, T., Górny, M., McDevitt, A.D., Wójcik, J.M., 2019. Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Research 64, 1929.Google Scholar
Stojak, J., McDevitt, A.D., Herman, J.S., Searle, J.B., Wójcik, J.M., 2015. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biological Journal of the Linnean Society 115. 927939.Google Scholar
Szumański, A., Laskowski, K., 1993. Szczegółowa mapa geologiczna Polski 1:50 000, Arkusz Miłki [The detailed geological map of Poland 1:50 000, Miłki sheet]. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warsaw.Google Scholar
Tast, J., 1966. The root vole, Microtus oeconomus (Pallas), as an inhabitant of seasonally flooded land. Annales Zoologici Fennici 3, 127171.Google Scholar
van Apeldoorn, R.C., 1999. Microtus oeconomus (Pallas, 1776). In: Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Kryštufek, B., Reijnders, P.J.H., Spitzenberger, E., Stubbe, M., Thissen, J.B., Vohralik, V., Zima, J. (Eds.), Atlas of European Mammals. Academic, London, pp. 244245.Google Scholar
van de Zande, L., van Apeldoorn, R.C., Blijdenstein, A.F., de Jong, D., van Delden, W., Bijlsma, R., 2000. Microsatellite analysis of population structure and genetic differentiation within and between populations of the root vole, Microtus oeconomus in the Netherlands. Molecular Ecology 9, 16511656.Google Scholar
Waters, J.M., Craw, D., Youngson, J.H., Wallis, G.P., 2001. Genes meet geology: fish phylogeographic pattern reflects ancient, rather than modern, drainage connections. Evolution 55, 18441851.Google Scholar
Waters, J.M., Wallis, G.P., Burridge, C.P., Craw, D., 2015. Geology shapes biogeography: Quaternary river-capture explains New Zealand's biologically ‘composite’ Taieri River. Quaternary Science Reviews 120, 4756.Google Scholar
White, K., Davidson, G.R., Paquin, P., 2009. Hydrologic evolution of the Edwards Aquifer recharge zone (Balcones fault zone) as recorded in the DNA of eyeless Cicurina cave spiders, south-central Texas. Geology 37, 339342.Google Scholar
Wieczorek, D., 2006. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50000, Arkusz Leżajsk [Explanations to the detailed geological map of Poland 1:50000, Leżajsk sheet]. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warsaw.Google Scholar
Wójcik, J.M., Kawałko, A., Marková, S., Searle, J.B., Kotlík, P., 2010. Phylogeographic signatures of northward post-glacial colonization from high-latitude refugia: a case study of bank voles using museum specimens. Journal of Zoology 281, 249262.Google Scholar
Wojtanowicz, J., 1994. O termokrasowej genezie Jezior Łęczyńsko-Włodawskich [On thermokarst genesis of the Łęczna-Włodawa lakes]. Annales Universitatis Mariae Curie-Skłodowska, Sectio B 49, 118.Google Scholar
Żarski, M., Winter, H., Nadachowski, A., Urbanowski, M., Socha, P., Kenig, K., Marcinkowski, B., et al. , 2017. Stratigraphy and palaeoenvironment of Stajna Cave (southern Poland) with regard to habitation of the site by Neanderthals. Geological Quarterly 61, 350369.Google Scholar