Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T13:11:56.302Z Has data issue: false hasContentIssue false

Integrating Model-Based Design of Mechatronic Systems with Domain-Specific Design Approaches

Published online by Cambridge University Press:  26 May 2022

S. Husung*
Affiliation:
Technische Universität Ilmenau, Germany
C. Weber
Affiliation:
Technische Universität Ilmenau, Germany
A. Mahboob
Affiliation:
Technische Universität Ilmenau, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In addition to the known approaches for product development new or supplementary approaches have emerged. An important approach in this field is Systems Engineering (SE) and Model-Based Systems Engineering. Through these approaches, new procedures, level-focused description concepts and terms come into product development. However there are still some uncertainties as to how the known approaches of product development can be combined with the SE approaches. This paper aims to show how the known development approaches can be extended by and integrated with SE approaches.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Albers, A., Burkhardt, N., Meboldt, M. and Saak, M. (2005) “SPALTEN Problem Solving Methodology in the Product Development”, 15th International Conference on Engineering Design. Melbourne, Australia,15.-18.08.2005, pp. 553554. DOI: 10.5445/IR/1000007075.Google Scholar
Albers, A. and Wintergerst, E. (2014) “The Contact and Channel Approach (C&C2-A): Relating a System's Physical Structure to Its Functionality”, in: Chakrabarti, A. and Blessing, L. T. M. (eds) An anthology of theories and models of design: Philosophy, approaches and empirical explorations, London, Springer, pp. 151171.Google Scholar
Anacker, H., Dumitrescu, R., Kharatyan, A. and Lipsmeier, A. (2020) “Pattern Based Systems Engineering – Application of Solution Patterns in the Design of Intelligent Technical Systems”, 16th International Design Conference (DESIGN 2020), pp. 11951204. DOI: 10.1017/dsd.2020.107.Google Scholar
Ariyo, O. O., Eckert, C. M. and Clarkson, P. J. (2008) “Hierarchical decompositions for complex product representation”, 10th International Design Conference, pp. 737744.Google Scholar
Blessing, L. (1996) “Comparison of design models proposed in prescriptive literature”, in: The role of design in the shaping technology, 5th edn, Social Sciences Series, pp. 187212.Google Scholar
Böhm, W. (2021) Model-Based Engineering of Collaborative Embedded Systems: Extensions of the SPES Methodology, Springer. DOI: 10.1007/978-3-030-62136-0.CrossRefGoogle Scholar
Browning, T. R. (2001) “Applying the design structure matrix to system decomposition and integration problems: a review and new directions”, IEEE Transactions on Engineering Management, vol. 48, no. 3, pp. 292306.CrossRefGoogle Scholar
Chakrabarti, A. and Blessing, L. T. M., eds. (2014) An anthology of theories and models of design: Philosophy, approaches and empirical explorations, London, Springer.Google Scholar
Ehrlenspiel, K. (2009) Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 4th edn, München, Hanser Verlag. 9783446420137.CrossRefGoogle Scholar
Ehrlenspiel, K. and Meerkamm, H. (2017) Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6th edn, Carl Hanser Verlag. DOI: 10.3139/9783446449084.Google Scholar
Estefan, J. A. (2008) Survey of model-based systems engineering (mbse) methodologies, INCOSE-TD-2007-003-02.Google Scholar
Friedenthal, S., Moore, A. and Steiner, R. (2015) A practical guide to SysML: The systems modeling language, 3rd edn, The MK/OMG Press. Burlington.Google Scholar
Gausemeier, J., Dumitrescu, R., Steffen, D., Czaja, A., Wiederkehr, O. and Tschirner, C. (2015) Systems engineering in industrial practice [Online], Paderborn, Germany.Google Scholar
Grundel, M., Abulawi, J., Moeser, G., Weilkiens, T., Scheithauer, A., Kleiner, S., Kramer, C., Neubert, M., Kümpel, S. and Albers, A. (2014) “FAS4M – No more: “Please mind the gap!””, Tag des Systems Engineering. Bremen, pp. 6374. DOI: 10.3139/9783446443761.007.Google Scholar
Haberfellner, R., de, Weck, O. L. and Fricke, E. (2019) Systems engineering: Fundamentals and applications, Springer International Publishing. DOI: 10.1007/978-3-030-13431-0.CrossRefGoogle Scholar
Hansen, F. (1955) Konstruktionssystematik – Grundlagen für eine allgemeine Konstruktionslehre (Systematic Design – Fundamentals of a General Model of Designing), VEB-Verlag Technik.Google Scholar
Hansen, F. and Bischoff, W. (1953) Rationelles Konstruieren (Efficient Designing), 5th edn, VEB Verlag Technik.Google Scholar
Hick, H., Bajzek, M. and Faustmann, C. (2019) “Definition of a system model for model-based development”, SN Applied Sciences, vol. 1, no. 9.Google Scholar
Hubka, V. and Eder, W. E. (1996) Design science: Introduction to the needs, scope and organization of engineering design knowledge, 2nd edn, London, Springer. DOI: 10.1007/978-1-4471-3091-8.CrossRefGoogle Scholar
Husung, S., Weber, C. and Mahboob, A. (2022) “Model-Based Systems Engineering – A New Way for Function-Driven Product Development”, in: Krause, D. and Heyden, E. (eds) Design Methodology for Future Products – data driven, agile and flexible, Springer International Publishing.Google Scholar
Husung, S., Weber, C., Mahboob, A. and Kleiner, S. (2021) “Using Model-Based Systems Engineering for need-based and consistent support of the design process”, 23rd International Conference on Engineering Design (ICED21). DOI: 10.1017/pds.2021.598.Google Scholar
Huth, T. and Vietor, T. (2020) “Systems Engineering in der Produktentwicklung: Verständnis, Theorie und Praxis aus ingenieurswissenschaftlicher Sicht”, Verständnis, Theorie und Praxis aus ingenieurswissenschaftlicher Sicht, no. 51, pp. 125130.CrossRefGoogle Scholar
Jacobs, G., Konrad, C., Berroth, J., Zerwas, T., Höpfner, G. and Spütz, K. (2022) “Function-oriented model-based product development”, in: Krause, D. and Heyden, E. (eds) Design Methodology for Future Products – data driven, agile and flexible, Springer International Publishing.Google Scholar
Koller, R. (1994) Konstruktionslehre für den Maschinenbau: Grundlagen zur Neu- und Weiterentwicklung technischer Produkte mit Beispielen, 3rd edn, Berlin, Heidelberg, Springer. DOI: 10.1007/978-3-662-08165-5.CrossRefGoogle Scholar
Krause, D. and Heyden, E., eds. (2022) Design Methodology for Future Products – data driven, agile and flexible, Springer International Publishing. DOI: 10.1007/978-3-030-78368-6.CrossRefGoogle Scholar
Lamm, J. G. and Weilkiens, T. (2014) “Method for Deriving Functional Architectures from Use Cases”, Systems Engineering, vol. 17, no. 2, pp. 225236.CrossRefGoogle Scholar
Lindemann, U. (2009) Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden, 3rd edn, Berlin, Springer. 978-3-642-01423-9.CrossRefGoogle Scholar
Meussen, B. (2021) “On the use of model based systems engineering and CAD for the design of physical products”, 23rd International Conference on Engineering Design (ICED21). DOI: 10.1017/pds.2021.493.Google Scholar
Morkevicius, A., Aleksandraviciene, A., Mazeika, D., Bisikirskiene, L. and Strolia, Z. (2017) “MBSE Grid: A Simplified SysML-Based Approach for Modeling Complex Systems”, INCOSE International Symposium. DOI: 10.1002/j.2334-5837.2017.00350.x.CrossRefGoogle Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007) Engineering design: A systematic approach, 3rd edn, London, Springer. DOI: 10.1007/978-1-84628-319-2.CrossRefGoogle Scholar
Pahl, G., Beitz, W. and Wallace, K. (1996) Engineering design: A systematic approach, 2nd edn, London, Berlin, Heidelberg, Springer. DOI: 10.1007/978-1-4471-3581-4.CrossRefGoogle Scholar
Pohl, K. (2012) Model-based engineering of embedded systems: The SPES 2020 methodology, Heidelberg, Springer. DOI: 10.1007/978-3-642-34614-9.Google Scholar
Ropohl, G. (1975) Systemtechnik: Grundlagen und Anwendung, München, Hanser. DOI: 10.1002/cite.330471315.Google Scholar
Roth, K. (2000) Konstruieren mit Konstruktionskatalogen, Berlin, Heidelberg, Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-17466-7.Google Scholar
Srinivasan, V., Chakrabarti, A. and Lindemann, U. (2012) “A Framework for Describing Functions in Design”, 12th International Design Conference (DESIGN 2012). Dubrovnik, Croatia, pp. 11111122.Google Scholar
Stone, R. B. and Wood, K. L. (2000) “Development of a Functional Basis for Design”, Journal of Mechanical Design, vol. 122, no. 4, pp. 359370.CrossRefGoogle Scholar
van Eck, D., McAdams, D. A. and Vermaas, P. E. (2008) “Functional Decomposition in Engineering: A Survey”, 19th International Conference on Design Theory and Methodology, 4.-7.9.2007. New York, NY, ASME. DOI: 10.1115/DETC2007-34232.Google Scholar
VDI (1987) VDI 2221:1987: Systematic Approach to the Design of Technical Systems and Products, Düsseldorf.Google Scholar
VDI (2004a) VD 2223:2004: Methodisches Entwerfen technischer Produkte / Systematic embodiment design of technical products, Düsseldorf.Google Scholar
VDI (2004b) VDI 2206:2004: Entwicklungsmethodik für mechatronische Systeme / Design methodology for mechatronic systems, Düsseldorf.Google Scholar
VDI (2019) VDI 2221:2019: Entwicklung technischer Produkte und Systeme/ Design of technical products and systems, Düsseldorf.Google Scholar
Walden, D. D., Roedler, G. J., Forsberg, K., Hamelin, R. D. and Shortell, T. M. (2015) Systems engineering handbook: A guide for system life cycle processes and activities, 4th edn, Hoboken, NJ, Wiley.978-1118999400.Google Scholar
Weber, C. (2005) “CPM/PDD - An Extended Theoretical Approach to Modelling Products and Product Development Processes”, 2nd German-Israeli Symposium on Advances in Methods and Systems for Development of Products and Processes, 07.-08.07.2005, Fraunhofer-IRB-Verlag, pp. 159179.Google Scholar
Weber, C. (2014) “Modelling Products and Product Development Based on Characteristics and Properties”, in: Chakrabarti, A. and Blessing, L. T. M. (eds) An anthology of theories and models of design: Philosophy, approaches and empirical explorations, London, Springer, pp. 327352.CrossRefGoogle Scholar
Weber, C. and Husung, S. (2016) “Solution patterns - their role in innovation, practice and education”, 14th International Design Conference (DESIGN 2016), Volume: Design Theory and Research Methods. Cavtat, Dubrovnik, Croatia, pp. 99108.Google Scholar
Yildirim, U., Campean, F. and Williams, H. (2017) “Function modeling using the system state flow diagram”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, vol. 31, no. 4, pp. 413435.Google Scholar