Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T06:04:57.836Z Has data issue: false hasContentIssue false

General models of ecological diversification. I. Conceptual synthesis

Published online by Cambridge University Press:  05 April 2016

Philip M. Novack-Gottshall*
Affiliation:
Department of Biological Sciences, Benedictine University, Lisle, Illinois 60532, U.S.A. E-mail: pnovack-gottshall@ben.edu.

Abstract

Evolutionary paleoecologists have proposed many explanations for Phanerozoic trends in ecospace utilization, including escalation, seafood through time, filling of an empty ecospace, and tiering, among others. These hypotheses can be generalized into four models of functional diversification within a life-habit ecospace framework (functional-trait space). The models also incorporate concepts in community assembly, functional diversity, evolutionary diversification, and morphological disparity. The redundancy model produces an ecospace composed of clusters of functionally similar taxa. The partitioning model produces an ecospace that is progressively subdivided by taxa along life-habit gradients. The expansion model produces an ecospace that becomes progressively enlarged by the accumulation of taxa with novel life habits. These models can be caused by a wide range of ecological and evolutionary processes, but they are all caused by particular “driven” mechanisms. A fourth, neutral model also exists, in which ecospace is filled at random by life habits: this model can serve as a passive null model. Each model produces distinct dynamics for functional diversity/disparity statistics when simulated by stochastic simulations of ecospace diversification. In this first of two companion articles, I summarize the theoretical bases of these models, describe their expected statistical dynamics, and discuss their relevance to important paleoecological trends and theories. Although most synoptic interpretations of Phanerozoic ecological history invoke one or more of the driven models, I argue that this conclusion is premature until tests are conducted that provide better statistical support for them over simpler passive models.

Type
Featured Article
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., Kiessling, W., and Fürsich, F. T.. 2006. Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology 32:259277.Google Scholar
Agosta, S. J., and Klemens, J. A.. 2008. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters 11:11231134.Google Scholar
Algeo, T. J., and Scheckler, S. E.. 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London B 353:118.Google Scholar
Allmon, W. D., and Martin, R. E.. 2014. Seafood through time revisited: the Phanerozoic increase in marine trophic resources and its macroevolutionary consequences. Paleobiology 40:255286.Google Scholar
Alroy, J. 2014. A simple Bayesian method of inferring extinction. Paleobiology 40:584607.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fursich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Anderson, M. J., Ellingsen, K. E., and McArdle, B. H.. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683693.Google Scholar
Araújo, M. S., Bolnick, D. I., and Layman, C. A.. 2011. The ecological causes of individual specialisation. Ecology Letters 14:948958.Google Scholar
Ausich, W. I., and Bottjer, D. J.. 1982. Tiering in suspension feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.Google Scholar
Baldomero, M. O., Patrice Showers, C., Maren, W., and Alexander, F.. 2014. Biodiversity of cone snails and other venomous marine gastropods: evolutionary success through neuropharmacology. Annual Review of Animal Biosciences 2:487513.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in M. J. S. Tevesz, and P. L. McCall, eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in J. W. Valentine, ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:6854.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C.. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.Google Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H.. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.Google Scholar
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4:724733.Google Scholar
Barabás, G., D’Andrea, R., Rael, R., Meszéna, G., and Ostling, A.. 2013. Emergent neutrality or hidden niches? Oikos 122:15651572.Google Scholar
Bateman, R. M., Crane, P. R., DiMichele, W. A., Kenrick, P. R., Rowe, N. P., Speck, T., and Stein, W. E.. 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Reviews in Ecology and Systematics 29:263292.Google Scholar
Behrensmeyer, A. K., Stayton, C. T., and Chapman, R. E.. 2003. Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology 29:5270.Google Scholar
Bennington, J. B., DiMichele, W. A., Badgley, C., Bambach, R. K., Barrett, P. M., Behrensmeyer, A. K., Bobe, R., Burnham, R. J., Daeschler, E. B., van Dam, J., Eronen, J., Erwin, D. H., Finnegan, S., Holland, S. M., Hunt, G., Jablonski, D., Jackson, S. T., Jacobs, B., Kidwell, S. M., Kock, P., Kowalewski, M., Labandeira, C., Looy, C., Lyons, S. K., Novack-Gottshall, P. M., Potts, R., Roopnarine, P., Strömberg, C., Sues, H., Wagner, P., Wilf, P., and Wing, S.. 2009. Critical issues of scale in paleoecology. Palaios 24:14.Google Scholar
Berke, S. K. 2015. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integrative and Comparative Biology 50:147157.Google Scholar
Berke, S. K., Jablonski, D., Krug, A. Z., and Valentine, J. W.. 2014. Origination and immigration drive latitudinal gradients in marine functional diversity. PLoS ONE 9:e101494.Google Scholar
Bottjer, D. J., and Ausich, W. I.. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? Journal of Paleontology 57:130.Google Scholar
Boyd, P. W., and Hutchins, D. A.. 2012. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Marine Ecology Progress Series 470:125135.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A.. 1992. Morphological disparity in the Cambrian. Science 256:16701673.Google Scholar
Brooks, D. R., and McLennan, D. A.. 1993. Parascript: parasites and the language of evolution. Smithsonian Institution Press, Washington, D.C.Google Scholar
Brousseau, L., Bonal, D., Cigna, J., and Scotti, I.. 2013. Highly local environmental variability promotes intrapopulation divergence of quantitative traits: an example from tropical rain forest trees. Annals of Botany 112:11691179.Google Scholar
Brower, J. C. 2013. Paleoecology of echinoderm assemblages from the Upper Ordovician (Katian) Dunleith Formation of northern Iowa and southern Minnesota. Journal of Paleontology 87:1643.Google Scholar
Brown, W. L. Jr., and Wilson, E. O.. 1956. Character displacement. Systematic Zoology 5:4964.Google Scholar
Burnham, K. P., and Anderson, D. R.. 2002. Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York.Google Scholar
Bush, A. M., and Bambach, R. K.. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.Google Scholar
Bush, A. M., and Bambach, R. K.. 2011. Paleoecologic megatrends in marine Metazoa. Annual Review of Earth and Planetary Sciences 39:241269.Google Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M.. 2007a. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.Google Scholar
Bush, A. M., Kowalewski, M., Hoffmeister, A. P., Bambach, R. K., and Daley, G. M.. 2007b. Potential paleoecologic biases from size-filtering of fossils: strategies for sieving. Palaios 22:612622.Google Scholar
Bush, A. M., Bambach, R. K., and Erwin, D. H.. 2011. Ecospace utilization during the Ediacaran radiation and the Cambrian eco-explosion. Pp. 111134 in M. Laflamme, J. D. Schiffbauer, and S. Q. Dornbos, eds. Quantifying the evolution of early life: numerical approaches to the evaluation of fossils and ancient ecosystems. Springer, New York.Google Scholar
Bush, A. M., and Novack-Gottshall, P. M.. 2012. Modelling the ecological-functional diversification of marine Metazoa on geological time scales. Biology Letters 8:151155.Google Scholar
Bush, A. M., and Pruss, S. B.. 2013. Theoretical ecospace for ecosystem paleobiology: energy, nutrients, biominerals, and macroevolution. In A. M. Bush, S. B. Pruss, and J. L. Payne, eds. Ecosystem paleobiology and geobiology. Short Courses in Paleontology 19:120. Paleontological Society and Paleontological Research Institute, Ithaca, N.Y.Google Scholar
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic–Phanerozoic transition. Paleobiology 23:247262.Google Scholar
Chase, J. M., and Leibold, M. A.. 2003. Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago.Google Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W.. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.Google Scholar
Clark, J. S., Dietze, M., Chakraborty, S., Agarwal, P. K., Ibanez, I., LaDeau, S., and Wolosin, M.. 2007. Resolving the biodiversity paradox. Ecology Letters 10:647659.Google Scholar
Clark, J. S., and McLachlan, J. S.. 2003. Stability of forest diversity. Nature 423:635638.Google Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.Google Scholar
Connor, E. F., and Simberloff, D.. 1979. The assembly of species communities: chance or competition? Ecology 60:11321140.Google Scholar
Cornell, H. V. 1999. Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Ecoscience 6:303315.Google Scholar
Cornell, H. V., and Harrison, S. P.. 2014. What are species pools and when are they important? Annual Review of Ecology, Evolution, and Systematics 45:4567.Google Scholar
Darroch, S. A. F., Sperling, E. A., Boag, T. H., Racicot, R. A., Mason, S. J., Morgan, A. S., Tweedt, S., Myrow, P., Johnston, D. T., Erwin, D. H., and Laflamme, M.. 2015. Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society B 282:20151003.Google Scholar
Darwin, C. E. 1859. On the origin of species. Harvard University Press, Cambridge.Google Scholar
de Bello, F. 2012. The quest for trait convergence and divergence in community assembly: are null-models the magic wand? Global Ecology and Biogeography 21:312317.Google Scholar
Diamond, J. M. 1975. Assembly of species communities. Pp. 342444 in M. L. Cody, and J. M. Diamond, eds. Ecology and evolution of communities. Harvard University Press, Cambridge.Google Scholar
Díaz, S., and Cabido, M.. 2001. Vive le différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16:646655.Google Scholar
Dick, D. G., and Maxwell, E. E.. 2015. The evolution and extinction of the ichthyosaurs from the perspective of quantitative ecospace modelling. Biology Letters 11:20150339.Google Scholar
Dineen, A. A., Fraiser, M. L., and Sheehan, P. M.. 2014. Quantifying functional diversity in pre- and post-extinction paleocommunities: a test of ecological restructuring after the end-Permian mass extinction. Earth-Science Reviews 136:339349.Google Scholar
Dineen, A. A., Fraiser, M. L., and Tong, J.. 2015. Low functional evenness in a post-extinction Anisian (Middle Triassic) paleocommunity: a case study of the Leidapo Member (Qingyan Formation), south China. Global and Planetary Change 133:7986.Google Scholar
Droser, M. L., Bottjer, D. J., and Sheehan, P. M.. 1997. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology 25:167170.Google Scholar
Edwards, D., Cherns, L., and Raven, J. A.. 2015. Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Palaeozoic times? Palaeontology 58:803837.Google Scholar
Ehrlich, P. R., and Raven, P. H.. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586608.Google Scholar
Eldredge, N. 1989. Macroevolutionary dynamics: species, niches, and adaptive peaks. McGraw-Hill, New York.Google Scholar
Erwin, D. H. 1994. Early introduction of major morphological innovations. Acta Palaeontologica Polonica 38:281294.Google Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and developmental context. Palaeontology 50:5773.Google Scholar
Erwin, D. H. 2011. Novelties that change carrying capacity. Journal of Experimental Zoology B 318:460465.Google Scholar
Erwin, D. H., and Tweedt, S.. 2011. Ecological drivers of the Ediacaran–Cambrian diversification of Metazoa. Evolutionary Ecology 26:417433.Google Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41:86.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J.. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:10911097.Google Scholar
Estes, S., and Arnold, S. J.. 2007. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist 169:227244.Google Scholar
Fargione, J., Brown, C. S., and Tilman, D.. 2003. Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences USA 100:89168920.Google Scholar
Fonseca, C. R., and Ganade, G.. 2001. Species functional redundance, random extinctions and the stability of ecosystems. Journal of Ecology 89:118125.Google Scholar
Foote, M. 1991. Morphological and taxonomic diversity in a clade’s history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology 28(6):101140.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.Google Scholar
Foote, M. 1996. Models of morphological diversification. Pp. 6286in D. H. Erwin, D. Jablonski, and J. H. Lipps, eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology Memoirs No. 1. Paleobiology 25(Suppl. to No. 2): 1116.Google Scholar
Foster, W. J., and Twitchett, R. J.. 2014. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nature Geoscience 7:233238.Google Scholar
Fox, B. J. 1987. Species assembly and the evolution of community structure. Evolutionary Ecology 1:201213.Google Scholar
Futuyma, D. J., and Moreno, G.. 1988. The evolution of ecological specialization. Annual Review of Ecology and Systematics 19:209233.Google Scholar
Futuyma, D. J., and Slatkin, M.. 1983. Coevolution. Sinauer, Sunderland, Mass.Google Scholar
Gause, G. F. 1934. The struggle for existence. Macmillan, New York.Google Scholar
Gavrilets, S., and Vose, A.. 2005. Dynamic patterns of adaptive radiation. Proceedings of the National Academy of Sciences USA 102:1804018045.Google Scholar
Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., and Prinzing, A.. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology 29:600614.Google Scholar
Gerisch, M. 2014. Non-random patterns of functional redundancy revealed in ground beetle communities facing an extreme flood event. Functional Ecology 28:15041512.Google Scholar
Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:26062621.Google Scholar
Gotelli, N. J., and Graves, G. R.. 1996. Null models in ecology. Smithsonian Institution Press, Washington, D.C.Google Scholar
Gotelli, N. J., and Ulrich, W.. 2012. Statistical challenges in null model analysis. Oikos 121:171180.Google Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.Google Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J., Schopf, T. J. M., and Simberloff, D. S.. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3:2340.Google Scholar
Grant, P. R. 1986. Ecology and evolution of Darwin’s finches. Princeton University Press, Princeton, N.J.Google Scholar
Grueber, C. E., Nakagawa, S., Laws, R. J., and Jamieson, I. G.. 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24:699711.Google Scholar
Guensberg, T. E., and Sprinkle, J.. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology 20:407410.Google Scholar
Guillemot, N., Kulbicki, M., Chabanet, P., and Vigliola, L.. 2011. Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage. PLoS One 6:e26735.Google Scholar
Hannisdal, B. 2007. Inferring phenotypic evolution in the fossil record by Bayesian inversion. Paleobiology 33:98115.Google Scholar
Hansen, T. A., and Kelley, P. H.. 1995. Spatial variation of naticid gastropod predation in the Eocene of North America. Palaios 10:268278.Google Scholar
Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:13411351.Google Scholar
Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., and Near, T. J.. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:23852396.Google Scholar
Hastings, A. 1980. Disturbance, coexistence, history, and competition for space. Theoretical Population Biology 18:363373.Google Scholar
Hautmann, M. 2014. Diversification and diversity partitioning. Paleobiology 40:162176.Google Scholar
Herrel, A., Huyghe, K., Vanhooydonck, B., Backeljau, T., Breugelmans, K., Grbac, I., Van Damme, R., and Irschick, D. J.. 2008. Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proceedings of the National Academy of Sciences USA 105:47924795.Google Scholar
Hoffmeister, A. P., and Kowalewski, M.. 2001. Spatial and environmental variation in the fossil record of drilling predation: a case study from the Miocene of Central Europe. Palaios 16:566579.Google Scholar
Holland, S. M. 2010. Additive diversity partitioning in palaeobiology: revisiting Sepkoski’s question. Palaeontology 53:12371254.Google Scholar
Holt, R. D. 2006. Emergent neutrality. Trends in Ecology and Evolution 21:531533.Google Scholar
Hooper, D. U., Chapin Iii, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., and Naeem, S.. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75:335.Google Scholar
Hubbell, S. P. 2001. The unified theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Hubbell, S. P. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology 19:166172.Google Scholar
Hubbell, S. P. 2006. Neutral theory and the evolution of ecological equivalence. Ecology 87:13871398.Google Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.Google Scholar
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences USA 112:48854890.Google Scholar
Hunter, J. P. 1998. Key innovations and the ecology of macroevolution. Trends in Ecology and Evolution 13:3136.Google Scholar
Huntley, J. W., and Kowalewski, M.. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.Google Scholar
Huntley, J. W., Yanes, Y., Kowalewski, M., Castillo, C., Delgado-Huertas, A., Ibáñez, M., Alonso, M. R., Ortiz, J. E., and Torres, T. d.. 2008. Testing limiting similarity in Quaternary terrestrial gastropods. Paleobiology 34:378388.Google Scholar
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22:415427.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93:145.Google Scholar
Ingram, T., Harmon, L. J., and Shurin, J. B.. 2012. When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model. Journal of Evolutionary Biology 25:19021910.Google Scholar
Janzen, D. H. 1985. On ecological fitting. Oikos 45:308310.Google Scholar
Johnson, J. B., and Omland, K. S.. 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution 19:101108.Google Scholar
Jones, C. G., Lawton, J. H., and Shachak, M.. 1994. Organisms as ecosystem engineers. Oikos 69:373386.Google Scholar
Jones, C. G., Lawton, J. H., and Shachak, M.. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:19461957.Google Scholar
Keddy, P. A. 1992a. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157164.Google Scholar
Keddy, P. A. 1992b. A pragmatic approach to functional ecology. Functional Ecology 6:621626.Google Scholar
Kelley, P. H., and Hansen, T. A.. 2006. Comparisons of class- and lower taxon-level patterns in naticid gastropod predation, Cretaceous to Pleistocene of the U.S. Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology 236:302320.Google Scholar
Kelley, P. H., Kowalewski, M., and Hansen, T. A.. 2003. Predator-prey interactions in the fossil record. Springer Science & Business Media, New York.Google Scholar
Kidwell, S. M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences USA 104:1770117706.Google Scholar
Kidwell, S. M. 2015. Biology in the Anthropocene: challenges and insights from young fossil records. Proceedings of the National Academy of Sciences USA 112:49224929.Google Scholar
Kinzig, A. P., Levin, S. A., Dushoff, J., and Pacala, S.. 1999. Limiting similarity, species packing, and system stability for hierarchical competition-colonization models. American Naturalist 153:371383.Google Scholar
Kloss, T. J., Dornbos, S. Q., and Chen, J.. 2015. Substrate adaptations of sessile benthic metazoans during the Cambrian radiation. Paleobiology 41:342352.Google Scholar
Klug, C., Kröger, B., Kiessling, W., Mullins, G. L., Servais, T., Frýda, J., Korn, D., and Turner, S.. 2010. The Devonian nekton revolution. Lethaia 43:465477.Google Scholar
Knoll, A. H., and Bambach, R. K.. 2000. Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? Paleobiology 26(Suppl. to No. 4):114.Google Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P.. 1996. Comparative earth history and Late Permian mass extinction. Science 273:452457.Google Scholar
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.Google Scholar
Knope, M. L., Forde, S. E., and Fukami, T.. 2012. Evolutionary history, immigration history, and the extent of diversification in community assembly. Frontiers in Microbiology 2:273.Google Scholar
Knope, M. L., Heim, N. A., Frishkoff, L. O., and Payne, J. L.. 2015. Limited role of functional differentiation in early diversification of animals. Nature Communications 6:6455.Google Scholar
Korn, D., Hopkins, M. J., and Walton, S. A.. 2013. Extinction space: a method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution 67:27952810.Google Scholar
Kosnik, M. A., Alroy, J., Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Wagner, P. J.. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology 37:303331.Google Scholar
Kowalewski, M., and Finnegan, S.. 2010. Theoretical diversity of the marine biosphere. Paleobiology 36:115.Google Scholar
Kowalewski, M., and Leighton, L. R.. 2007. Predator-prey interactions: experimental and field approaches. Journal of Shellfish Research 26:217220.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Barbour Wood, S. L., and Hoffmeister, A. P.. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
Kowalewski, M., and Novack-Gottshall, P.. 2010. Resampling methods in paleontology. In J. Alroy, and G. Hunt, eds. Quantitative methods in paleobiology. Short Courses in Paleontology 16:1954. Paleontological Society and Paleontological Research Institute, Ithaca, N.Y.Google Scholar
Kowalewski, M., Payne, J. L., Smith, F. A., Wang, S. C., McShea, D. W., Xiao, S., Novack-Gottshall, P. M., McClain, C. R., Krause, R. A. Jr, Boyer, A. G., Finnegan, S., Lyons, S. K., Stempien, J. A., Alroy, J., and Spaeth, P. A.. 2011. The Geozoic supereon. Palaios 26:251255.Google Scholar
Kraft, N. J. B., Crutsinger, G. M., Forrestel, E. J., and Emery, N. C.. 2014. Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos 123:13911399.Google Scholar
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., and Levine, J. M.. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29:592599.Google Scholar
Kronfeld-Schor, N., and Dayan, T.. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology and Systematics 34:153181.Google Scholar
Labandeira, C. C. 2005. Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. Trends in Ecology and Evolution 20:253262.Google Scholar
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H.. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research 23:558573.Google Scholar
Laland, K. N., Odling-Smee, F. J., and Feldman, M. W.. 1999. Evolutionary consequences of niche construction and their implications for ecology. Proceedings of the National Academy of Sciences USA 96:1024210247.Google Scholar
Laliberté, E., and Legendre, P.. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299305.Google Scholar
Lee, Michael S. Y., Soubrier, J., and Edgecombe, Gregory D.. 2013. Rates of phenotypic and genomic evolution during the Cambrian explosion. Current Biology 23:18891895.Google Scholar
Levinton, J. S., and Bambach, R. K.. 1975. Comparative study of Silurian and Recent deposit-feeding bivalve communities. Paleobiology 1:97124.Google Scholar
Liow, L. H., Van Valen, L., and Stenseth, N. C.. 2011. Red Queen: from populations to taxa and communities. Trends in Ecology and Evolution 26:349358.Google Scholar
Loreau, M. 2004. Does functional redundancy exist? Oikos 104:606611.Google Scholar
Losos, J. B. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism. American Naturalist 175:623639.Google Scholar
Losos, J. B. 2011. Convergence, adaptation, and constraint. Evolution 65:18271840.Google Scholar
Losos, J. B., Warheitt, K. I., and Schoener, T. W.. 1997. Adaptive differentiation following experimental island colonization in Anolis lizards. Nature 387:7073.Google Scholar
Losos, J. B., Leal, M., Glor, R. E., Queiroz, K. d., Hertz, P. E., Schettino, L. R., Lara, A. C., Jackman, T. R., and Larson, A.. 2002. Niche lability in the evolution of a Caribbean lizard community. Nature 424:542545.Google Scholar
Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., and Jackson, J. B. C.. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:18061809.Google Scholar
MacArthur, R. H. 1970. Species packing and competitive equilibrium for many species. Theoretical Population Biology 1:111.Google Scholar
MacArthur, R. H., and Levins, R.. 1967. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101:377385.Google Scholar
Mahler, D. L., Revell, L. J., Glor, R. E., and Losos, J. B.. 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64:27312745.Google Scholar
Mahler, D. L., Ingram, T., Revell, L. J., and Losos, J. B.. 2013. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292295.Google Scholar
Maire, E., Grenouillet, G., Brosse, S., and Villéger, S.. 2015. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography 24:728740.Google Scholar
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34:355.Google Scholar
Martin, R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, and diversity of the marine biosphere. Palaios 11:209219.Google Scholar
Mason, N. W. H., Mouillot, D., Lee, W. G., and Wilson, J. B.. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112118.Google Scholar
Maurer, B. A. 1999. Untangling ecological complexity. University of Chicago Press, Chicago.Google Scholar
Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Boston.Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M.. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21:178185.Google Scholar
McKinney, M. L. 1990. Classifying and analyzing evolutionary trends. Pp. 2858in K. J. McNamara, ed. Evolutionary Trends. University of Arizona Press, Tucson.Google Scholar
McLean, E. L., and Lasker, H. R.. 2013. Height matters: position above the substratum influences the growth of two demosponge species. Marine Ecology 34:122129.Google Scholar
McPeek, M. A. 1996. Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. American Naturalist 148:S124S138.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.Google Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.Google Scholar
Miller, J. H., Behrensmeyer, A. K., Du, A., Lyons, S. K., Patterson, D., Tóth, A., Villaseñor, A., Kanga, E., and Reed, D.. 2014. Ecological fidelity of functional traits based on species presence-absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology 40:560583.Google Scholar
Mitchell, J. S., and Makovicky, P. J.. 2014. Low ecological disparity in Early Cretaceous birds. Proceedings of the Royal Society B 281:20140608.Google Scholar
Mitchell, J. S., Roopnarine, P. D., and Angielczyk, K. D.. 2012. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proceedings of the National Academy of Sciences USA 109:1885718861.Google Scholar
Mittelbach, G. G., and Schemske, D. W.. 2015. Ecological and evolutionary perspectives on community assembly. Trends in Ecology and Evolution 30:241247.Google Scholar
Mondal, S., and Harries, P. J.. 2015. Phanerozoic trends in ecospace utilization: the bivalve perspective. Earth-Science Reviews 152:106118.Google Scholar
Morris, R. W., and Felton, S. H.. 2003. Paleoecologic associations and secondary tiering of Cornulites on crinoids and bivalves in the Upper Ordovician (Cincinnatian) of southwestern Ohio, southeastern Indiana, and northern Kentucky. Palaios 18:546558.Google Scholar
Mouchet, M. A., Villéger, S., Mason, N. W. H., and Mouillot, D.. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24:867876.Google Scholar
Mouillot, D., Dumay, O., and Tomasini, J. A.. 2007. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine, Coastal and Shelf Science 71:443456.Google Scholar
Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., and Bellwood, D. R.. 2013. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 28:167177.Google Scholar
Mouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias-González, J. E., Bender, M., Chabanet, P., Floeter, S. R., Friedlander, A., Vigliola, L., and Bellwood, D. R.. 2014. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences USA 111:1375713762.Google Scholar
Na, L., and Kiessling, W.. 2015. Diversity partitioning during the Cambrian radiation. Proceedings of the National Academy of Sciences USA 112:47024706.Google Scholar
Nagel-Myers, J., Dietl, G. P., Handley, J. C., and Brett, C. E.. 2013. Abundance is not enough: The need for multiple lines of evidence in testing for ecological stability in the fossil record. PLoS One 8:e63071.Google Scholar
Novack-Gottshall, P. M. 2006. Distinguishing among the four open hypotheses for long-term trends in ecospace diversification: a null model approach. Geological Society of America Abstracts with Programs 38:A86.Google Scholar
Novack-Gottshall, P. M. 2007a. The origin of adaptive zones: comparative ecological diversity (richness and disparity) of higher taxonomic categories. Geological Society of America Abstracts with Programs 39:A91.Google Scholar
Novack-Gottshall, P. M. 2007b. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.Google Scholar
Novack-Gottshall, P. M. 2016. General models of ecological diversification. II. Simulations and empirical applications. Paleobiology 42 [this issue].Google Scholar
Nürnberg, S., and Aberhan, M.. 2015. Interdependence of specialization and biodiversity in Phanerozoic marine invertebrates. Nature Communications 6:18.Google Scholar
O’Brien, L. J., and Caron, J.-B.. 2015. Paleocommunity analysis of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia: comparison with the Walcott Quarry and implications for community variation in the Burgess Shale. Paleobiology 42:2753.Google Scholar
Odling-Smee, F. J., Laland, K. N., and Feldman, M. W.. 2003. Niche Construction: The Neglected Process in Evolution. Princeton University Press, Princeton, N.J.Google Scholar
Olszewski, T. D. 2011. Persistence of high diversity in non-equilibrium ecological communities: implications for modern and fossil ecosystems. Proceedings of the Royal Society B 279:230236.Google Scholar
Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist 100:6575.Google Scholar
Paine, R. T. 1969. A note on trophic complexity and species diversity. American Naturalist 100:9193.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2003. Lack of community saturation at the beginning of the Paleozoic plateau: the dominance of regional over local processes. Paleobiology 29:545560.Google Scholar
Petchey, O. L., and Gaston, K. J.. 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5:402411.Google Scholar
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.Google Scholar
Peters, S. E., and Bork, K. B.. 1998. Secondary tiering on crinoids from the Waldron Shale (Silurian: Wenlockian) of Indiana. Journal of Paleontology 72:887894.Google Scholar
Peterson, A. T., Soberón, J., and Sánchez-Cordero, V.. 1999. Conservatism of ecological niches in evolutionary time. Science 285:12651267.Google Scholar
Plotnick, R. E., and Baumiller, T. K.. 2000. Invention by evolution: functional analysis in paleobiology. Paleobiology 26(Suppl. to No. 4):305323.Google Scholar
Plotnick, R. E., and McKinney, M. L.. 1993. Ecosystem organization and extinction dynamics. Palaios 8:202212.Google Scholar
Podani, J. 2009. Convex hulls, habitat filtering, and functional diversity: mathematical elegance versus ecological interpretability. Community Ecology 10:244250.Google Scholar
Poff, N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16:391409.Google Scholar
Powell, M. G., and Kowalewski, M.. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.Google Scholar
Price, J. P., and Clague, D. A.. 2002. How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence. Proceedings of the Royal Society of London B 269:24292435.Google Scholar
Purves, D. W., and Turnbull, L. A.. 2010. Different but equal: the implausible assumption at the heart of neutral theory. Journal of Animal Ecology 79:12151225.Google Scholar
Rabosky, D. L., and Lovette, I. J.. 2008. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62:18661875.Google Scholar
Radenbaugh, T. A., and McKinney, F. K.. 1998. Comparison of the structure of a Mississippian and a Holocene pen shell assemblage. Palaios 13:5269.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1983. On the early origins of major biologic groups. Paleobiology 9:107115.Google Scholar
Raup, D. M., and Gould, S. J.. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S.. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81:525542.Google Scholar
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., and Hertog, R.. 2007. Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society of London B 274:20772086.Google Scholar
Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J., and Etienne, R. S.. 2012. The case for ecological neutral theory. Trends in Ecology and Evolution 27:203208.Google Scholar
Sahney, S., Benton, M. J., and Falcon-Lang, H. J.. 2010. Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica. Geology 38:10791082.Google Scholar
Savazzi, E., ed. 1999. Functional morphology of the invertebrate skeleton. Wiley, New York.Google Scholar
Scheffer, M., and van Nes, E. H.. 2006. Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences USA 103:62306235.Google Scholar
Schindel, D. E., Vermeij, G. J., and Zipser, E.. 1982. Frequencies of repaired shell fractures among the Pennsylvanian gastropods of north-central Texas. Journal of Paleontology 56:729740.Google Scholar
Schluter, D. 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.Google Scholar
Schoener, T. W. 1971. Theory of feeding strategies. Annual Review of Ecology and Systematics 2:369404.Google Scholar
Schoener, T. W. 1974. Resource partitioning in ecological communities. Science 185:2739.Google Scholar
Schopf, T. J. M. 1979. Evolving paleontological views on deterministic and stochastic approaches. Paleobiology 5:337352.Google Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S.. 1975. Genomic versus morphologic rates of evolution: influence of morphologic complexity. Paleobiology 1:6370.Google Scholar
Schwilk, D. W., and Ackerly, D. D.. 2005. Limiting similarity and functional diversity along environmental gradients. Ecology Letters 8:272281.Google Scholar
Scott-Phillips, T. C., Laland, K. N., Shuker, D. M., Dickins, T. E., and West, S. A.. 2013. The niche construction perspective: a critical appraisal. Evolution 68:12311243.Google Scholar
Segar, S. T., Pereira, R. A. S., Compton, S. G., and Cook, J. M.. 2013. Convergent structure of multitrophic communities over three continents. Ecology Letters 16:14361445.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393396.Google Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity: II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222251.Google Scholar
Seilacher, A. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Seilacher, A. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.Google Scholar
Servais, T., Owen, A. W., and Harper, D.. 2010. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294:99119.Google Scholar
Sessa, J. A., Bralower, T. J., Patzkowsky, M. E., Handley, J. C., and Ivany, L. C.. 2012. Environmental and biological controls on the diversity and ecology of Late Cretaceous through early Paleogene marine ecosystems in the U.S. Gulf Coastal Plain. Paleobiology 38:218239.Google Scholar
Signor, P. W., and Vermeij, G. J.. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology 20:297319.Google Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Southwood, T. R. E. 1977. Habitat, the template for ecological strategies. Journal of Animal Ecology 46:337365.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. Journal of Paleontology 42:214229.Google Scholar
Stanley, S. M. 1973a. Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals. Systematic Biology 22:486506.Google Scholar
Stanley, S. M. 1973b. An explanation for Cope’s rule. Evolution 27:126.Google Scholar
Stanley, S. M. 2008. Predation defeats competition on the seafloor. Paleobiology 34:121.Google Scholar
Stephens, D. W., and Krebs, J. R.. 1986. Foraging theory. Princeton University Press, Princeton, N.J.Google Scholar
Stuart, Y. E., and Losos, J. B.. 2013. Ecological character displacement: glass half full or half empty? Trends in Ecology and Evolution 28:402408.Google Scholar
Sundue, M. A., Testo, W. L., and Ranker, T. A.. 2015. Morphological innovation, ecological opportunity, and the radiation of a major vascular epiphyte lineage. Evolution 69:24822495.Google Scholar
Tarhan, L. G., and Droser, M. L.. 2014. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeography, Palaeoclimatology, Palaeoecology 399:310322.Google Scholar
Taylor, P. D., and Wilson, M. A.. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62:1103.Google Scholar
Terborgh, J. W. 2015. Toward a trophic theory of species diversity. Proceedings of the National Academy of Sciences USA 112:1141511422.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458461.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of the marine benthos. Pp. 479625in M. J. S. Tevesz, and P. L. McCall, eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Thomas, R. D. K., and Reif, W. E.. 1993. The skeleton space: a finite set of organic designs. Evolution 47:341360.Google Scholar
Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:216.Google Scholar
Tyler, C. L., Leighton, L. R., Carlson, S. J., Huntley, J. W., and Kowalewski, M.. 2013. Predation on modern and fossil brachiopods: assessing chemical defenses and palatability. Palaios 28(10):724735.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice Hall, Englewood Cliffs, N.J.Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology 6:444450.Google Scholar
Valentine, J. W. 1995. Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisted. Palaios 10:190194.Google Scholar
Valentine, J. W., and Moores, E. M.. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:657659.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:118.Google Scholar
Van Valen, L. 1974. Multivariate structural statistics in natural history. Journal of Theoretical Biology 45:235247.Google Scholar
Vergnon, R., Dulvy, N. K., and Freckleton, R. P.. 2009. Niches versus neutrality: uncovering the drivers of diversity in a species-rich community. Ecology Letters 12:10791090.Google Scholar
Vergnon, R., van Nes, E. H., and Scheffer, M.. 2012. Emergent neutrality leads to multimodal species abundance distributions. Nature Communications 3:663.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, N.J.Google Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.Google Scholar
Vermeij, G. J. 1999. Inequality and the directionality of history. American Naturalist 153:243253.Google Scholar
Vermeij, G. J. 2006. Historical contingency and the purported uniqueness of evolutionary innovations. Proceedings of the National Academy of Sciences USA 103:18041809.Google Scholar
Vermeij, G. J. 2008. Escalation and its role in Jurassic biotic history. Palaeogeography, Palaeoclimatology, Palaeoecology 263(1–2):38.Google Scholar
Vermeij, G. J. 2011. The energetics of modernization: The last one hundred million years of biotic evolution. Paleontological Research 15(2):5461.Google Scholar
Vermeij, G. J. 2013. On escalation. Annual Review of Earth and Planetary Sciences 41:119.Google Scholar
Vermeij, G. J., and Lindberg, D. R.. 2000. Delayed herbivory and the assembly of marine benthic ecosystems. Paleobiology 26:419430.Google Scholar
Vermeij, G. J., Schindel, D. E., and Zipser, E.. 1981. Predation through geological time: evidence from gastropod shell repair. Science 214:10241026.Google Scholar
Villéger, S., Mason, N. W. H., and Mouillot, D.. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:22902301.Google Scholar
Villéger, S., Miranda, J. R., Hernández, D. F., and Mouillot, D.. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20:15121522.Google Scholar
Villéger, S., Novack-Gottshall, P. M., and Mouillot, D.. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters 14:561568.Google Scholar
Wagner, P. J. 2000. Phylogenetic analyses and the fossil record: tests and inferences, hypotheses and models. Paleobiology 26(Suppl. to No. 4):341371.Google Scholar
Wagner, P. J., and Erwin, D. H.. 2006. Patterns of convergence in general shell form among Paleozoic gastropods. Paleobiology 32:316337.Google Scholar
Wagner, P. J., and Estabrook, G. F.. 2014. Trait-based diversification shifts reflect differential extinction among fossil taxa. Proceedings of the National Academy of Sciences USA 111(46):1641916424.Google Scholar
Wagner, P. J., and Marcot, J. D.. 2013. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution 4:703713.Google Scholar
Walker, K. W., and Laporte, L. F.. 1970. Congruent fossil communities from Ordovician and Devonian carbonates of New York. Journal of Paleontology 44:928944.Google Scholar
Walker, T. D., and Valentine, J. W.. 1984. Equilibrium models of evolutionary species diversity and the number of empty niches. American Naturalist 124:887899.Google Scholar
Wang, H., Zhang, Z., Holmer, L. E., Hu, S., Wang, X., and Li, G.. 2012. Peduncular attached secondary tiering acrotretoid brachiopods from the Chengjiang fauna: implications for the ecological expansion of brachiopods during the Cambrian explosion. Palaeogeography, Palaeoclimatology, Palaeoecology 323–325:6067.Google Scholar
Wang, S. C. 2001. Quantifying passive and driven large-scale evolutionary trends. Evolution 55:849858.Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J.. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475505.Google Scholar
Weiher, E., and Keddy, P., eds. 1999. Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, New York.Google Scholar
Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T., and Bentivenga, S.. 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society B 366:24032413.Google Scholar
White, J. W., Rassweiler, A., Samhouri, J. F., Stier, A. C., and White, C.. 2014. Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123:385388.Google Scholar
Wiens, J. J., and Graham, C. H.. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36:519539.Google Scholar
Wills, M. A. 2001. Morphological disparity: a primer. Pp. 55143in J. M. Adrain, G. D. Edgecombe, and B. S. Lieberman, eds. Fossils, phylogeny, and form: an analytical approach. Kluwer Academic/Plenum, New York.Google Scholar
Winemiller, K. O., Fitzgerald, D. B., Bower, L. M., and Pianka, E. R.. 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters 18:737751.Google Scholar
Wood, R. 1993. Nutrients, predation and the history of reef-building. Palaios 8:526543.Google Scholar
Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., Jackson, J. B. C., Lotze, H. K., Micheli, F., and Palumbi, S. R.. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314:787790.Google Scholar
Wright, J. P., Jones, C. G., and Flecker, A. S.. 2002. An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96101.Google Scholar
Xiao, S., and Laflamme, M.. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution 24:3140.Google Scholar
Zamora, R. 2000. Functional equivalence in plant-animal interactions: ecological and evolutionary consequences. Oikos 88:442447.Google Scholar
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., McGlinn, D. J., O’Meara, B. C., Moles, A. T., Reich, P. B., Royer, D. L., Soltis, D. E., Stevens, P. F., Westoby, M., Wright, I. J., Aarssen, L., Bertin, R. I., Calaminus, A., Govaerts, R., Hemmings, F., Leishman, M. R., Oleksyn, J., Soltis, P. S., Swenson, N. G., Warman, L., and Beaulieu, J. M.. 2013. Three keys to the radiation of angiosperms into freezing environments. Nature 506:8992.Google Scholar