Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-16T20:34:57.342Z Has data issue: false hasContentIssue false

Primer on quantum cognition

Published online by Cambridge University Press:  23 December 2019

Jerome R. Busemeyer*
Affiliation:
Indiana University Bloomington (USA)
Zheng Wang
Affiliation:
The Ohio State University (USA)
*
*Correspondence concerning this article should be addressed to Jerome R. Busemeyer. Indiana University Bloomington. Department of Psychological Brain Sciences. 47405-7000 Indiana (USA). E-mail: jbusemey@indiana.edu

Abstract

Quantum cognition is a new field in psychology, which is characterized by the application of quantum probability theory to human judgment and decision making behavior. This article provides an introduction that presents several examples to illustrate in a simple and concrete manner how to apply these principles to interesting psychological phenomena. Following each simple example, we present the general mathematical derivations and new predictions related to these applications.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper grew out of an invited talk given at the VII Advanced International Seminar – Mathematical Models of Decision Making Processes: State of the Art and Challenges held at the School of Psychology, Universidad Complutense de Madrid (Spain) in October 2018 (http://eventos.ucm.es/go/DecisionMakingModels). The authors were supported by NSF SES-1560554, SES-1560501 and AFOSR FA9550-15-1-0343.

How to cite this article:

Busemeyer, J. R., & Wang, Z. (2019). Primer on quantum cognition. The Spanish Journal of Psychology, 22. e53. Doi:10.1017/sjp.2019.51

References

Aerts, D., Gabora, L. & Sozzo, S. (2013). Concepts and their dynamics: A quantum-theoretic modeling of human thought. Topics in Cognitive Science, 5 (4), 737772. http://doi.org/10.1111/tops.12042Google ScholarPubMed
Atmanspacher, H. & Filk, T. (2010). A proposed test of temporal nonlocality in bistable perception. Journal of Mathematical Psychology, 54, 314321. http://doi.org/10.1016/j.jmp.2009.12.001CrossRefGoogle Scholar
Blutner, R. beim & Graben, P. (2016). Quantum cognition and bounded rationality. Synthese, 193 (10), 32393291. http://doi.org/10.1007/s11229-015-0928-5CrossRefGoogle Scholar
Brainerd, C. J., Wang, Z. & Reyna, V. (2013). Superposition of episodic memories: Overdistribution and quantum models. Topics in Cognitive Science, 5(4), 773799.Google ScholarPubMed
Bruza, P. D., Wang, Z. & Busemeyer, J. R. (2015). Quantum cognition: A new theoretical approach to psychology. Trends in cognitive sciences 19(7), 383393. http://doi.org/10.1016/j.tics.2015.05.001CrossRefGoogle ScholarPubMed
Busemeyer, J. R. & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Busemeyer, J. R., Pothos, E. M., Franco, R. & Trueblood, J. S. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118 (2), 193218. http://doi.org/10.1037/a0022542CrossRefGoogle ScholarPubMed
Busemeyer, J. R. & Wang, Z. (2018). Hilbert space multidimensional theory. Psychological review, 125 (4), 572591. http://doi.org/10.1037/rev0000106CrossRefGoogle ScholarPubMed
Busemeyer, J. R., Wang, Z. & Lambert-Mogiliansky, A. (2009). Empirical comparison of markov and quantum models of decision making. Journal of Mathematical Psychology, 53(5), 423433. http://doi.org/10.1016/j.jmp.2009.03.002CrossRefGoogle Scholar
Costello, F. & Watts, P. (2018). Invariants in probabilistic reasoning. Cognitive psychology, 100, 116. http://doi.org/10.1016/j.cogpsych.2017.11.003CrossRefGoogle ScholarPubMed
Costello, F., Watts, P. & Fisher, C. (2017). Surprising rationality in probability judgment: Assessing two competing models. Cognition, 170, 280287. http://doi.org/10.1016/j.cognition.2017.08.012CrossRefGoogle ScholarPubMed
Gudder, S. P. (1988). Quantum probability. San Diego, CA: Academic Press.Google Scholar
Hameroff, S. R. (2013). Quantum mechanical cognition requires quantum brain biology. Behaviora and brain sciences 36(3), 287288. http://doi.org/10.1017/S0140525X1200297XCrossRefGoogle Scholar
Haven, E. & Khrennikov, A. (2013). Quantum social science. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
James, W. (1890). The principles of psychology. New York, NY: Henry Holt and CompanyGoogle Scholar
Kellen, D., Singmann, H. & Batchelder, W. H. (2018). Classic-probability accounts of mirrored (quantum-like) order effects in human judgments. Decision, 5(4), 323338. http://doi.org/10.1037/dec0000080CrossRefGoogle Scholar
Kolmogorov, A. N. (1950). Foundations of the theory of probability . New York, NY: Chelsea Publishing Co. (Original work published 1933)Google Scholar
Kvam, P. D., Pleskac, T. J., Yu, S. & Busemeyer, J. R. (2015). Interference effects of choice on confidence: Quantum characteristics of evidence accumulation. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 1064510650. https://doi.org/10.1073/pnas.1500688112CrossRefGoogle ScholarPubMed
Moore, D. W. (2002). Measuring new types of question-order effects: Additive and Subtractive. Public Opinion Quarterly, 66, 8091. http://doi.org/10.1086/338631CrossRefGoogle Scholar
Morier, D. M. & Borgida, E. (1984). The conjunction fallacy: A task specific phenomena? Personality and Social Psychology Bulletin, 10, 243252. http://doi.org/10.1177/0146167284102010CrossRefGoogle Scholar
Narens, L. (2015). Probabilistic lattices with applications to psychology. Singapore, Singapore; Hackensack, NJ; London, UK: World Scientific.CrossRefGoogle Scholar
Plotnitsky, A. (2012). Niels Bohr and complementarity: An introduction. New York, NY: Springer Science & Business Media.CrossRefGoogle Scholar
Pothos, E. M. & Busemeyer, J. R. (2009). A quantum probability model explanation for violations of ‘rational’ decision making. Proceedings of the Royal Society, B, 276(1665), 21712178. http://doi.org/10.1098/rspb.2009.0121CrossRefGoogle Scholar
Pothos, E. M. & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral and Brain Sciences, 36, 255274. http://doi.org/10.1017/S0140525X12001525CrossRefGoogle ScholarPubMed
Pothos, E. M., Busemeyer, J. R. & Trueblood, J. S. (2013). A quantum geometric model of similarity. Psychological Review, 120(3), 679696. http://doi.org/10.1037/a0033142CrossRefGoogle ScholarPubMed
Tesar, J. (2019). A quantum model of strategic decision-making explains the disjunction effect in the prisoner’s dilemma game. Decision. Advance online publication. http://doi.org/10.1037/dec0000110Google Scholar
Trueblood, J. S., Yearsley, J. M. & Pothos, E. M. (2017). A quantum probability framework for human probabilistic inference. Journal of Experimental Psychology: General, 146(9), 13071341. http://doi.org/10.1037/xge0000326CrossRefGoogle ScholarPubMed
Tversky, A. & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunctive fallacy in probability judgment. Psychological Review, 90, 293315. http://doi.org/10.1037/0033-295X.90.4.293CrossRefGoogle Scholar
Von Neumann, J. (1955). Mathematical foundations of quantum theory (T Beyer, R., Trans.). Princeton, NJ: Princeton University Press.Google Scholar
Wang, Z. & Busemeyer, J. (2015). Reintroducing the concept of complementarity into psychology. Frontiers in Psychology, 6 (1822). http://doi.org/10.3389/fpsyg.2015.01822CrossRefGoogle ScholarPubMed
Wang, Z. & Busemeyer, J. (2016a). Comparing quantum versus Markov random walk models of judgments measured by rating scales. Philosophical Transactions of the Royal Society A, 374, 20150098. http://doi.org/10.1098/rsta.2015.0098CrossRefGoogle Scholar
Wang, Z. & Busemeyer, J. (2013). A quantum question order model supported by empirical tests of an a priori and precise prediction. Topics in Cognitive Science, 5(4), 689710. https://doi.org/10.1111/tops.12040Google ScholarPubMed
Wang, Z. & Busemeyer, J. R. (2016b). Interference effects of categorization on decision making. Cognition, 150, 133149. http://doi.org/10.1016/j.cognition.2016.01.019CrossRefGoogle ScholarPubMed
Wang, Z., Solloway, T., Shiffrin, R. M. & Busemeyer, J. R. (2014). Context effects produced by question orders reveal quantum nature of human judgments. Proceedings of the National Academy of Sciences of the USA, 111(26), 94319436. http://doi.org/10.1073/pnas.1407756111CrossRefGoogle ScholarPubMed
Wendt, A. 2015 . Quantum mind and social science. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Yearsely, J. M. & Trueblood, J. (2017). A quantum theory account of order effects and conjunction fallacies in political judgments. Psychonomic Bulletin & Review, 25, 15171525. http://doi.org/10.3758/s13423-017-1371-zCrossRefGoogle Scholar