Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T17:17:36.976Z Has data issue: false hasContentIssue false

Probing the Cosmic Frontier of Galaxies

Published online by Cambridge University Press:  27 October 2016

Pascal A. Oesch*
Affiliation:
Yale Center for Astronomy and Astrophysics, Physics and Astronomy Departments, New Haven, CT 06520, USA email: pascal.oesch@yale.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding when and how the first galaxies formed and what sources reionized the universe are key goals of extragalactic astronomy. Thanks to deep surveys with the powerful WFC3/IR camera on the HST, the observational frontier of galaxy build-up now lies at only ~450 Myr after the Big Bang, at redshifts z ~10-12. In combination with deep data from Spitzer/IRAC we can now probe the evolution of the stellar mass density over 96% of cosmic history. However, detecting and characterizing galaxies at these early epochs is challenging even for HST and the sample sizes at the earliest redshifts are still very small. The Hubble Frontier Fields provide a prime new dataset to improve upon our current, sparse sampling of the UV luminosity function at z>8 from blank fields to answer some of the most pressing open questions. For instance, even the evolution of the cosmic star-formation rate density at z>8 is still debated. While our measurements based on blank field data indicate that galaxies with SFR>0.7 Msol/yr disappear quickly from the cosmic record between z~8 and z~10, other previous results, e.g., from the CLASH survey favor a more moderate decline. Here, we briefly review the recent progress in studying galaxy build-up out to z~10 from the combined blank field and existing Frontier Field datasets and discuss their implications for primordial galaxy formation and cosmic reionization.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Atek, H., et al. 2014, ApJ, 786, 60 CrossRefGoogle Scholar
Bouwens, R. J., et al. 2015, ApJ, 803, 34 CrossRefGoogle Scholar
Coe, D., Bradley, L., & Zitrin, A. 2015, ApJ, 800, 84 CrossRefGoogle Scholar
Coe, D., et al. 2013, ApJ, 762, 32 CrossRefGoogle Scholar
Ellis, R. S., et al. 2013, ApJL, 763, L7 CrossRefGoogle Scholar
Holwerda, B. W., Bouwens, R., Oesch, P., Smit, R., Illingworth, G., & Labbe, I. 2015, ApJ, 808, 6 CrossRefGoogle Scholar
Huang, K.-H., Ferguson, H. C., Ravindranath, S., & Su, J. 2013, ApJ, 765, 68 CrossRefGoogle Scholar
Kawamata, R., Ishigaki, M., Shimasaku, K., Oguri, M., & Ouchi, M. 2015, ApJ, 804, 103 CrossRefGoogle Scholar
Laporte, N., et al. 2014, AaapA, 562, L8 Google Scholar
McLeod, D. J., McLure, R. J., Dunlop, J. S., Robertson, B. E., Ellis, R. S., & Targett, T. A. 2015, MNRAS, 450, 3032 CrossRefGoogle Scholar
Mosleh, M., et al. 2012, ApJL, 756, L12 CrossRefGoogle Scholar
Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Franx, M., Ammons, S. M., van Dokkum, P. G., Trenti, M., & Labbé, I. 2015, ApJ, 808, 104 CrossRefGoogle Scholar
Oesch, P. A., et al. 2010, ApJL, 709, L21 CrossRefGoogle Scholar
Oesch, P. A., et al. 2012, ApJ, 745, 110 CrossRefGoogle Scholar
Oesch, P. A., et al. 2014, ApJ, 786, 108 CrossRefGoogle Scholar
Ono, Y., et al. 2013, ApJ, 777, 155 CrossRefGoogle Scholar
van der Wel, A., et al. 2014, ApJ, 788, 28 CrossRefGoogle Scholar
Wong, K. C., Ammons, S. M., Keeton, C. R., & Zabludoff, A. I. 2012, ApJ, 752, 104 CrossRefGoogle Scholar
Zheng, W., et al. 2012, Nature, 489, 406 CrossRefGoogle Scholar
Zheng, W., et al. 2014, ApJ, 795, 93 CrossRefGoogle Scholar
Zitrin, A., et al. 2014, ApJL, 793, L12 CrossRefGoogle Scholar