Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T20:50:44.262Z Has data issue: false hasContentIssue false

Dusty Galaxies at the Highest Redshifts

Published online by Cambridge University Press:  17 August 2016

David L Clements
Affiliation:
Physics Department, Blackett Lab, Prince Consort Road, London SW7 2AZ, UK
Josh Greenslade
Affiliation:
Physics Department, Blackett Lab, Prince Consort Road, London SW7 2AZ, UK
Dominik A. Riechers
Affiliation:
Department of Astronomy, Cornell University, Space Sciences Building, Ithaca, NY 14853, USA
Julie Wardlow
Affiliation:
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
Ismael Pérez-Fournon
Affiliation:
Instituto de Astrofísica de Canarias, C/Vía Láctea, E-38200 La Laguna, Tenerife, Spain Departimento de Astrofísica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The use of red colour as the basis for selecting candidate high redshift dusty galaxies from surveys made with Herschel has proved highly successful. The highest redshift such object, HFLS3, lies at z = 6.34 and numerous other sources have been found. Spectroscopic followup confirms that most of these lie at z > 4. These sources are found in such numbers that they represent a challenge to current models of galaxy evolution. We also examine the prospects for finding dusty galaxies at still higher redshifts. These would not appear in the SPIRE surveys from Herschel but would be detected in longer wavelength, submm, surveys. Several such ‘SPIRE-dropouts’ have been found and are now subject to followup observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Asboth, V. 2015, PhD thesis, University of British ColumbiaGoogle Scholar
Bussmann, R. S., Pérez-Fournon, I., Amber, S., et al. 2013, ApJ, 779, 25 Google Scholar
Carter, M., Lazareff, B., Maier, D., et al. 2012, A&A, 538, A89 Google Scholar
Chung, A., Narayanan, G., Yun, M. S., Heyer, M., & Erickson, N. R. 2009, AJ, 138, 858 CrossRefGoogle Scholar
Dowell, C. D., Conley, A., Glenn, J., et al. 2014, ApJ, 780, 75 Google Scholar
Eales, S., Dunne, L., Clements, D., et al. 2010, PASP, 122, 499 CrossRefGoogle Scholar
Fixsen, D. J., Dwek, E., Mather, J. C., Bennett, C. L., & Shafer, R. A. 1998, ApJ, 508, 123 Google Scholar
Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518, L3 Google Scholar
Harris, A. I., Baker, A. J., Frayer, D. T., et al. 2012, ApJ, 752, 152 CrossRefGoogle Scholar
Hatsukade, B., Kohno, K., Aretxaga, I., et al. 2011, MNRAS, 411, 102 CrossRefGoogle Scholar
Hughes, D. H., Serjeant, S., Dunlop, J., et al. 1998, Nature, 394, 241 CrossRefGoogle Scholar
Lupu, R. E., Scott, K. S., Aguirre, J. E., et al. 2012, ApJ, 757, 135 Google Scholar
Oliver, S. J., Bock, J., Altieri, B., et al. 2012, MNRAS, 424, 1614 CrossRefGoogle Scholar
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1 Google Scholar
Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A&A, 518, L2 Google Scholar
Puget, J.-L., Abergel, A., Bernard, J.-P., et al. 1996, A&A, 308, L5 Google Scholar
Riechers, D. A., Bradford, C. M., Clements, D. L., et al. 2013, Nature, 496, 329 Google Scholar
Scott, K. S., Lupu, R. E., Aguirre, J. E., et al. 2011, ApJ, 733, 29 Google Scholar
Walter, F., Decarli, R., Carilli, C., et al. 2012, Nature, 486, 233 CrossRefGoogle Scholar
Watson, D., Christensen, L., Knudsen, K. K., Richard J., Gallazzi A., & Michałowski, M. J., 2015, Nature, 519, 327 Google Scholar
Weintroub, J. 2014, American Astronomical Society Meeting Abstracts #224, 224, #414.05Google Scholar